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Abstract

Real exchange rates (RERs) display sizable fluctuations not only over the business cycle,

but also at lower frequencies, resulting in large and persistent swings over decades—facts that

many business cycle models struggle to match. We propose an international macroeconomics

model with endogenous productivity to rationalize these facts. In the model, endogenous growth

amplifies stationary fluctuations generating persistent productivity differences between countries

that trigger low-frequency cycles in the RER. The estimated model effortlessly replicates the

empirical spectrum, autocorrelation, and half-life of the RER. In addition, we document that low

frequency movements in aggregate trade flows are crucial to discipline the RER cycles. Finally,

we validate the model-implied co-movement between relative prices and technology differentials

using a panel of cross industry-country data on patent and industry prices.
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Figure 1: U.S. Real Exchange Rate

Notes: The blue line is the trade weighted quarterly averaged real exchange rate
between the U.S and the other G-7 countries for 1972:Q2—2016:Q4. The orange
line is the HP-1600 trend of the same series. The data sources and construction
are described in section 3.

1 Introduction

The excess volatility and persistence of real exchange rates (RERs) relative to other macroeconomic

variables such as output and consumption has long challenged models of the international busi-

ness cycle (see, for example, Chari, Kehoe, and McGrattan (2002)). Figure 1 displays the trade

weighted U.S. RERs with the rest of G-7 countries. Four observations characterize the behavior of

the RER. First, the detrended series display high volatility at business cycle frequencies (on average,

4.0 percent versus 1.0 percent for GDP over the same period relative to an Hodrick-Prescott (HP)

trend). Second, the RER displays high serial correlation (0.96). Third, while the excess volatility

is typically documented at business cycle frequency, it is even more pronounced at the medium-

and low-frequency component, as the trend itself displays persistent fluctuations, a point raised by

Rabanal and Rubio-Ramirez (2015). Fourth, the half-life of the RER—the time it takes its impulse

response function to fall below half of its peak—is close to 4.5 years (Steinsson, 2008).1

The importance of low-frequency fluctuations can be formalized using the spectrum of the exchange

1All these observations are robust to using longer samples and individual country pairs.
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rate.2 Our estimated spectrum peaks at frequency zero, which indicates that the RER displays strong

low-frequency fluctuations. Indeed, about 50 percent of the variability of exchange rates is coming

from frequencies lower than the business cycle.3 In addition, as we can see in the lower panel, the

autocorrelation function of the exchange rate indicates a high persistence as well.

The main contribution of this paper is to provide a novel and yet simple framework to capture

these rich low-frequency movements in the RER. While these patterns are puzzling for standard

open economy models, we tackle them with a model featuring endogenous technical change (Comin

and Gertler (2006)). More precisely, we formulate a two-country real business cycle model (Heathcote

and Perri (2002)) augmented with an endogenous productivity channel (Romer (1990)) and a slow

diffusion of ideas across countries (Eaton and Kortum (1999)). A simplified version of the model

shows how endogenous growth can trigger persistent RER dynamics. We then demonstrate that an

estimated version of the model can rationalize the spectrum, autocorrelation function, and half-life of

the RER in finite sample, while producing reasonable business cycle dynamics. In all our exercises,

we fix the short- and long-run trade elasticity to values consistent with recent estimates from the

trade literature. Therefore, our mechanism does not rely on a low trade elasticity.

In any international real business cycle (IRBC) model, the RER is strongly influenced by the

productivity gap between the countries. Moreover, as the exchange rate is a forward-looking price

through its role in clearing international asset markets, it responds to the expected productivity

gap between the countries. When a shock makes R&D more desirable in one country, the resulting

additional innovations trigger a permanent increase in the level of productivity of this country and a

relative imbalance in the international goods market. The RER adjusts to bring international goods

and asset markets into equilibrium. Because the productivity gap is highly persistent, the price

adjustment is highly persistent as well. As time passes, changes in relative prices and international

spillovers gradually impel the laggard country to innovate so that, in the long run, the relative

prices come back to its original level.4 In the case of an exogenous growth model, shocks themselves

need to be extremely persistent to generate persistent movements in the RER, as the standard real

business cycle model lacks sufficient internal propagation. This condition ties the persistence of the

RER directly to the persistence of other macro series. Importantly, when the same data is used

to estimate our endogenous growth model and a similar exogenous growth model, both estimations

2The spectrum of a variable Yt with autocovariances {γj}∞j=∞ is

sY (ω) =
1

2π

∞∑
j=−∞

γje
−iωj .

Here, we estimate it using the modified Bartlett Kernel with a bandwidth of 13. This is the largest consecutive lag
starting from 0, which is still statistically significantly correlated with the series itself. The main results in this paper
are robust to variations in the bandwidth and can be viewed, alternatively, through the lenses of the autocovariance
function.

3Quarter−1 = 0.031 corresponds to 8 years in our sample, which is the upper limit in the standard definition of
business cycles.

4Slow cross-country adoption is consistent with the findings in, for example, Irwin and Klenow (1994).
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Figure 2: U.S. Rate Exchange Rate: Spectrum and Autocorrelation

Notes: The blue line in the top panel is the spectrum of the trade weighted
quarterly averaged real exchange rate between the U.S and the other G-7 coun-
tries computed using the modified Bartlett Kernel for 1972:Q2—2016:Q4. The
blue line in the lower panel is the autocorrelation function of the trade weighted
quarterly averaged real exchange rate between the U.S and the other G-7 coun-
tries for 1972:Q2—2016:Q4. The data sources and construction are described in
section 3.

will, by construction, display similar observed filtered Solow residual time series. However, the

endogenous growth model will generate more persistent expected productivity gaps at every point in

time, therefore displaying low-frequency exchange rate fluctuations–absent on its exogenous growth

counterpart–without sacrificing higher frequency performance.

Our mechanism relies on a link between persistent differences in relative prices and productivity

dynamics. While we provide empirical evidence consistent with this link, the reader might still wonder
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Figure 3: U.S. Real Exchange Rate

Notes: The blue line is the logged ration of exports and imports between the
U.S and the other G7 countries for 1985:Q1—2016:Q4. The orange line is the
HP-1600 trend of the same series. The red line shows the HP-1600 trend of the
real exchange rate. The data sources and construction are described in section
3.

if this story contradicts the idea that exchange rates are notoriously hard to forecast.5 However, it

is important to keep in mind that the exchange rate disconnect puzzle refers mainly to short-term

dynamics. Figure 3 shows a robust low-frequency co-movement between the export-to-import ratio

and the exchange rate. This relationship turns out to be the key to disciplining our estimation by

forcing a re-connection between the RER and quantities at low frequencies.

In our main quantitative exercise, we estimate a richer IRBC model. The main comparison point is

a model with the same features but where productivity in both countries is exogenous. The models

are estimated using Bayesian methods. Both estimations deliver consistent HP-filtered moments.

Nevertheless, only the endogenous growth model can replicate the spectrum and autocorrelation

function from Figure 2. This result is robust to the particular modeling choices of R&D, and the

exclusion of the additional frictions. Furthermore, the robustness section shows that nothing in

our quantitative results requires that the adjustment in the RER actually occurs through relative

nominal prices. In fact, our mechanism is fully consistent with a strong role of the nominal exchange

5This observation goes back, at least, to Meese and Rogoff (1983). See Itskhoki and Mukhin (2017) for a recent
analysis of this idea.
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rate in this adjustment.

At the core of the empirical success of the endogenous growth model is the interaction between

trade flows and exchange rates. To illustrate this point, we estimate the model without exchange

rate data and compare the model implied exchange rate dynamics with their empirical counterpart.

Even without the commonly used uncovered interest parity shocks, the baseline endogenous growth

model tracks the dynamics of the RER well (correlation 0.66). When trade data are excluded from

the estimation, the model can generate low frequency movements in the RER, but these dynamics

are disconnected from the empirical exchange rate (the correlation drops to -0.29). Therefore, the

low-frequency co-movement between trade flows and exchange rate informs the endogenous growth

model on how to use the internal propagation to trigger well-paced low-frequency exchange rate

dynamics.

We purposely endow our model with many shocks and structural features. The reason is that there

is limited empirical evidence on what drives exchange rates (Itskhoki and Mukhin, 2017). Here, the

estimation step is crucial for our purposes because it imposes discipline on what different shocks

and blocks of the model can and cannot explain. In this sense, we follow the path used in other

areas of macroeconomics, such as monetary economics (Smets and Wouters, 2007) and macro/finance

(Christiano, Motto, and Rostagno, 2014). Our hope is that the empirical findings in this paper serve

as a road map for the next generation of exchange rate dynamics models.

Finally, as an empirical validation for the relationship between innovation and relative prices at the

core of the model, we collect data on industry-level relative prices and new patents at the industry

level across 15 countries. We show that variations in the relative number of new patents between a

given industry-country pair and the U.S. predicts the level of the industry level exchange rate in the

following years and forecasts changes in the exchange rate for the following years, both with a sign

consistent with our model.

Related Literature Starting with the early work on international real business cycle models by

Backus, Kehoe, and Kydland (1992), and Baxter and Crucini (1995), a large literature has explored

the international transmission of shocks, co-movements between countries, and the dynamics of

the RER in multi-country DSGE models. The dynamics of the RER have been found troubling

to reproduce, be it in real models driven by TFP shocks as in Heathcote and Perri (2002)), or

richer models as in Chari, Kehoe, and McGrattan (2002). Relative to this general literature, we

show that our endogenous growth model can improve the ability of the IRBC to generate exchange

rate dynamics by making productivity endogenous and responsive to other shocks. Closest to ours

is probably the paper by Rabanal and Rubio-Ramirez (2015), who argue for looking at the full

spectrum of the RER to validate models and demonstrate that a model with co-integrated TFP

shock processes can match these dynamics. However, their model relies on very low short- and

long-run trade elasticities. In contrast, we are able to match a richer set of facts while using a

trade elasticity in line with micro estimates and using only stationary shocks to endogenously induce
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persistent movements in the RER. Because of this, we do not rely either on the strong pricing effect

at the core of Corsetti, Dedola, and Leduc (2008).6

There is a long tradition in international macroeconomics in analyzing the ability of various business

cycle models to capture aspects of the dynamics of the RER. In putting demand and technology

shocks at the forefront, we depart from the tradition of using nominal models with monetary shocks

to explain RER fluctuations. In this respect, we share Berka, Devereux, and Engel (2012)’s view

that monetary shocks do not contribute strongly to the dynamics of RERs not only in the short run

(a view also shared by Chari, Kehoe, and McGrattan (2002) and Steinsson (2008)) but also in the

long run.

Our paper is also related to models that study entry and innovation in the open economy. Ghironi

and Melitz (2005) show how entry of new varieties into production and export can lead to deviations

from PPP in an IRBC and, through discrepancies between the welfare-relevant and the statistical

price index, improve some of the international co-movement implications of the model. Our setup,

while related, does not work through mismeasured prices and focuses on the dynamics of the RER.

Alfaro, Cunat, Fadinger, and Liu (2018) studies the effect of changes of the RER on innovative

behavior at the micro level. In our model, RER and innovation are jointly determined and our focus

is on macro-dynamics.7

Another recent strand of the literature has explored the ability of models with Epstein-Zin pref-

erences to explore international asset prices and their co-movement. Salient examples can be found

in Colacito and Croce (2011), Colacito and Croce (2013), and Farhi and Gabaix (2015). Using this

framework, Grüning (2017) and Gavazzoni and Santacreu (2019) demonstrate that the addition of

endogenous growth can help explain a set of otherwise puzzling facts in international finance. Rela-

tive to these papers, we do not rely on the long-run risk channel to explain the exchange rate and we

provide a full model estimation, forcing it to be consistent with larger set of facts. Most importantly,

we provide, for the first time, a fully endogenous framework rationalizing low-frequency exchange

rate dynamics.

Finally, we share many aspects with the estimation exercise of Alessandria and Choi (2019), espe-

cially as both focus on the role of trade flows. However, while they use their model to account for the

dynamics of the U.S trade balance in a rich trade model, we focus on the RER on an international

finance framework imposing extra constraints coming from macro aggregates. Part of the short-run

dynamics induced by endogenous growth resonate with the work by Raffo (2010), and Karabarbou-

nis (2014). That literature combines Greenwood, Hercowitz, and Huffman (1988)-preferences with

investment specific technology shocks or shocks to the labor wedge, to generate short-run dynamics

6Another recent paper looking at the spectrum of some macro time series is Beaudry, Galizia, and Portier (2020),
who study the spectrum of labor market, investment, and credit variables. Their focus is different from ours. While
we are mainly pointing to the large mass at frequencies longer than the business cycle, Beaudry, Galizia, and Portier
(2020) focus on the shape of the spectrum to argue for the presence of cyclical swins with a length of roughly 10 years.
For our study the exact shape of the spectrum is less central.

7For recent evidence of the importance of technology (news) for the U.S. business cycle see also the study by
Cascaldi-Garcia and Vukotić (2020), who use patents to identify U.S. TFP news shocks in a VAR.
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in trade prices and quantities. The comovement arises as a result of an increase in consumption

and investment demand that initially outpaces supply. In our endogenous growth framework, the

desire to expand the technological frontier induces on impact similar dynamic forces. Nevertheless,

our baseline model has additional supply and slow diffusion effects that shape the low-frequency

dynamics of the exchange rate.

The structure of the paper is as follows. Section 2 present the full model. Section 3 explains

the estimation exercise, while Section 4 collects the main results and performs robustness analysis.

Section 5 shows the industry-level evidence. Section 6 concludes. The appendix collects additional

empirical results and the equations characterizing a model equilibrium.

2 Two-Country Model

This section describes our two-country real business cycle model with endogenous growth. Time is

discrete. Each country is populated by a representative household owning the capital stock and all

firms within her country. Households trade a real non-contingent bond with each other, the only

asset that is internationally traded. We call the first country the home country and the second

country the foreign country.8 Our exposition concentrates on the description of the home country.

All equations beside the structure of the bond are symmetric. Foreign variables are denoted by ′∗′.

2.1 Household

The representative household maximizes her expected discounted utility over consumption and labor

given by

E0

∞∑
t=0

t−1∏
s=0

βs


(
ct − ψ1,txtl

1+ψ2
t

)1−σ

1− σ

 ,
where ct and lt denote consumption, and labor supply in period t. σ is the household’s parameter of

risk aversion and ψ2 the inverse Frisch elasticity. ψ1,t captures the level of dis-utility from working,

which is subject to persistent shocks with law of motion:

log(ψ1,t) = ψ̄(1− ρψ) + ρψ log(ψ1,t−1) + σψε
ψ
t .

Here, ρψ parameterizes the persistence and σψ the volatility of deviations from the mean ψ̄ of logged

disutility. εψt is an i.i.d. normally distributed disturbance with mean zero and variance one. Finally,

βt denotes the household’s discount factor between period t and t+ 1. We assume the following law

of motion for it:

log(βt) = β̄(1− ρβ) + ρβ log(βt−1) + σβε
β
t ,

8In our quantitative analysis, we will identify the home country with the United States, and the foreign country
with an aggregate of the other G7 countries.

8



where ρβ parameterizes the persistence and σβ the volatility of deviations from the mean β̄ of logged

disutility. εβt is an i.i.d. normally distributed disturbance with mean zero and variance one.

The dis-utility from working is also affected by the habit term xt, which is governed by:

xt = (c̄t)
γx1−γ

t−1 .

c̄t is average consumption in the economy, which in equilibrium is equal to ct, but is considered

exogenous by the household. This specification allows us to have a low short-run wealth elasticity,

while allowing for a balanced growth path in the absence of shocks.9

The household chooses ct, lt, investment it, capital utilization ut, and holdings of foreign bonds bt

subject to the budget constraint:

Ptct+Ptit+P
∗
t bt = PtWtlt+PtR

k
t utkt−1+Πt+Tt+R

∗
t−1P

∗
t bt−1exp(Ut)exp

(
b̄t−1

At−1

)−φ1 (
Et−1RERt

RERt−2

)−φ2
.

Here, Pt is the price of the retail goods in the home country, while P ∗t is the price of retail goods in

the foreign country. Wt and Rk
t are the wage per unit of labor supply and the rental rate per unit of

capital services, both in units of the retail good. b̄t−1 is last period choice of the level of bonds in the

country, which the household takes as exogenous. Πt are profits and Tt lump sum taxes, which are

paid to the household by firms and the government, respectively. RERt :=
P ∗
t

Pt
is the real exchange

rate between the two countries. R∗t is the return on a foreign bond from period t to t + 1 in units

of the foreign good. We assume that the bond’s return is affected by an adjustment cost in levels

consistent with Schmitt-Grohé and Uribe (2003).10 φ1 parameterizes those adjustment costs (for a

structural interpretation, see Fisher (2014)). In addition, in some of our experiments we allow for the

additional adjustment cost parameterized by φ2 ≥ 0 following Adolfson, Laséen, Lindé, and Villani

(2008).11 At is the total number of varieties the home country uses in production, a measure of its

technical development as explained later. Here, we use At−1 to normalize the cost of holding bonds

to induce stationarity relative to the endogenous trend.

kt denotes the capital stock at the end of period t, which follows the law of motion:

kt = (1− δk(ut))kt−1 + qt

(
1− φi

(
it
it−1

))
it.

δk(.) denotes the change in capital depreciation when the household adjusts capital utilization, while

φi(.) denotes investment adjustment costs. The accumulation of capital is subject to a marginal

9Here we deviate from Jaimovich and Rebelo (2009) and follow, for example, Gaĺı, Smets, and Wouters (2012)
and Campbell, Fisher, Justiniano, and Melosi (2017).

10We assume that portfolio adjustment costs are rebated back to the household as a lump sum payment.
11As we discuss in the result section, this addition is not crucial for our results. The main effect of these costs is to

induce hump shaped exchange rate dynamics in the short run.
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efficiency shock with law of motion:

log(qt) = ρqlog(qt−1) + σqε
q
t ,

where ρq parametrizes the persistence and σq the volatility of the disturbance. εqt is an i.i.d. normally

distributed shock with mean zero and variance one. Ut is a shock to the uncovered interest rate parity

(UIP) condition with the law of motion given by:

log(Ut) = ρU log(Ut−1) + σUε
U
t ,

where ρU parametrizes the persistence and σU the volatility of deviations from 0. εUt is an i.i.d.

normally distributed disturbance with mean zero and variance one.

The problem of the foreign household differs in two aspects. From her perspective, the bond is

settled in the final good of her country and, therefore, following a common convention in the literature

she is not subject to a bond adjustment cost or UIP shocks.

2.2 Retailers

Final goods, which are used for private and public consumption, investment, and the development

of new input goods, are assembled by retailers using domestic and imported brands purchased from

wholesalers. They sell their output in competitive markets and are price takers in their interaction

with wholesalers. There is a continuum of wholesalers of each type, indexed by i ∈ [0, 1], who produce

the wholesale good as explained in the next subsection, which they sell in competitive markets to

retailers.

Given the domestic price level Pt, the retailer buys yD,t units of the domestic wholesale good and

yI,t units of import wholesale good at prices pD,t and pI,t to produce Yt units of the final good. The

decision problem of the representative retailer is:

max
Yt,yD,t,yI,t

∞∑
t

Λt|0(PtYt − pD,tyD,t − pI,tyI,t)

s.t. Yt =
(
aDy

ρ
D,t + aI(φtyI,t)

ρ
) 1
ρ

φt = 1− ι

2

( yI,t
yD,t
yI,t−1

yD,t−1

− 1

)2

.

Here aD and aI are constants that parameterize the degree of home bias in goods, while ρ parame-

terizes the elasticity of substitution. We assume that production is subject to adjustment costs on

the mix of import and domestic goods to capture a lower short-term elasticity of substitution pa-

rameterized by ι.12 Therefore, the retailer’s problem is intertemporal and the retailer uses a discount

12Ruhl et al. (2008) discusses the need for different short run and long run elasticities. We address this issue using
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factor Λt|0 induced by its owner, the household, to make its decisions.

2.3 Wholesalers

Domestic wholesalers produce their goods using labor and capital services rented from the domestic

household and intermediate good varieties bought from domestic intermediate good producers. They

are price takers with respect to their inputs and output good. The problem of the wholesaler of a

domestic brand is:

max
yD,t,LD,t,K̄D,t,[mi,D,t]

1
i=0,MD,t

pD,tyD,t − PtWtLD,t − PtRk
t K̄D,t −

∫ At−1

0

qi,tmi,D,tdi.

pD,t denotes the sales price charged by the wholesaler, LD,t and K̄D,t are the amounts of labor and

capital services, respectively, used in production. At−1 is the mass of intermediate good varieties

available at time t. Variety i has price qi,t and mi,D,t units are purchased by the wholesaler. MD,t is

a Dixit-Stiglitz aggregator of the different varieties of intermediate goods, where µ parametrizes the

elasticity of substitution,

MD,t =

(∫ At−1

0

mµ
i,D,tdi

) 1
µ

.

The production function of the wholesaler is

yD,t = ZtK̄
αK
D,tL

αL
D,tM

αM
D,t

log(Zt) = log(Z̄)(1− ρZ) + ρZ log(Zt−1) + εZt .

Here, αK , αL, αM parametrize the weights of capital, labor, and the aggregate of intermediate goods

in the production function. Zt is a TFP shock, where ρZ parametrizes the persistence and σZ the

volatility of deviations from the mean Z̄ of logged productivity. εZt is an i.i.d. normally distributed

disturbance with mean zero and variance one.

The problem of the wholesalers of imported brands is similar but with two distinctions: the goods

are produced in the foreign economy and they are subject to a trade cost shock.13

max
yI,t,L

∗
I,t,K̄

∗
I,t,[m

∗
i,I,t]

1
i=0,M

∗
I,t

pI,tyI,t − P ∗t W ∗
t L
∗
I,t − P ∗t R

k,∗
t K̄∗I,t −

∫ A∗
t−1

0

q∗i,tm
∗
i,I,tdi

adjustment costs following Erceg, Guerrieri, and Gust (2006). The cost allows our model to have a lower short-run
elasticity of substitution relative to the long-run elasticity. The presence of these costs limits the pass-through of
temporary exchange rate movements into quantities, given all models considered a better chance at generating volatile
exchange rates while having empirical plausible implications for consumption and GDP. See also Drozd, Kolbin, Nosal,
et al. (2019) for a discussion of the importance of these costs in generating plausible co-movement between countries
and of plausible micro-foundations for the cost.

13For part of the paper, these shocks are turned off. However, when we estimate the model using import and export
data, we add the shocks to give the model enough flexibility to match the data.
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M∗
I,t =

(∫ A∗
t−1

0

(m∗i,I,t)
µdi

) 1
µ

yI,t = Ωg
tΩ

l
tZ
∗
t (K̄∗I,t)

αK (L∗I,t)
αL(M∗

I,t)
αM

log(Z∗t ) = log(Z̄∗)(1− ρ∗Z) + ρ∗Z log(Z∗t−1) + εZ,∗t

log(Ωg
t ) = ρΩg log(Ωg

t−1) + εΩ
g

t

log(Ωl
t) = ρΩllog(Ωl

t−1) + εΩ
l

t .

Ωg
t and Ωl

t are two shocks to the productivity of producing exports, where for x ∈ {g, l} ρΩx

parametrizes the persistence and σΩx the volatility of deviations from the mean of 1. εΩt is an i.i.d.

normally distributed disturbance with mean zero and variance one. We deviate slightly from the way

we treat most of the shocks in the model. Ωg
t is assumed to affect the producers of exports in both

countries symmetrically, while Ωl
t affects exports to country one as displayed above while it enters

the other export problem as 1
Ωlt

.14

2.4 Intermediate Good Producers

Our setup for technological growth follows Comin and Gertler (2006) in the tradition of the en-

dogenous growth model of Romer (1990). However, the economic mechanism that links endogenous

technical change and exchange rates in this model is not specific to a particular model of technological

progress.15

2.4.1 Existing Intermediate Good Producers

At the beginning of each period, there is a mass At−1 of intermediate good producers. Existing

intermediate good producers turn final goods into intermediate goods. They are monopolists for the

sail of their variety. In the following, we suppress the dependence on the producers’ index i. Each

period their optimization problem is given by

max
qt

(pt − Pt)DM,t(qt)− Φ.

DM,t is the demand for each variety in period t, derived from the wholesaler’s problem above.

Denote the solution of the optimization problem as πt, the per-period profits of the intermediate

14Here, we follow Alessandria and Choi (2019). The formulation allows us to capture better the symmetric expansion
of trade over time. Results are very similar if we assume the two shocks to affect the export productivity in the country
independently. However, filtered shocks to the two processes would be fairly correlated.

15An alternative would be to build on the Schumpeterian framework of Grossman and Helpman (1991) and Aghion
and Howitt (1992), extended by Ates and Saffie (forthcoming) to the international business cycle literature. In fact,
our results are consistent with the relative price movements in Benguria, Matsumoto, and Saffie (2020).
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producer. Φ is a fixed cost of operation.16 Each of them leaves the market at the end of the period

with probability δa and the underlying variety is gone. Therefore, the value of a producer, Ht, at the

beginning of the period is given by the recursive pricing equation:

Ht = πt +Et(1− δa)Λt,t+1Ht+1.

Λt,t+1 denotes the stochastic discount factor induced by the household’s preferences between period

t and t+ 1 as the domestic household is the final owner of the intermediate good producer.

2.4.2 Technology Evolution and Innovation

Entrepreneurs with a total measure of one, on behalf of the representative household, spend resources

to generate new intermediate goods by developing new ideas on which they own monopoly rights.

The introduction of new varieties follows a two-step process. First, entrepreneurs choose how much

of the final good to invest into new technologies Nt. This investment is denoted by Si,t, while St

denotes the aggregate investment. The maximization problem of the entrepreneur working on the

first stage is

max
Si,t

Et

(
ζt

(
Nt−1 + τN∗t−1

)1−η

S1−η
t

Si,tΛt,t+1Jt+1 − PtSi,t

)
.

The entrepreneur chooses Si,t to produce ζt
(Nt−1+τN∗

t−1)
1−η

S1−η
t

new technologies tomorrow. Those still

need to be turned into varieties that can be produced. Such an idea has a value Jt+1 tomorrow,

whose determination is described below. As that value is determined tomorrow, it needs to be

discounted with the factor Λt,t+1. Beside the investment itself, the number of varieties depends on

three parts. First, ζt is a factor that scales the output. Second, τN∗t−1 captures an exogenous spillover

between countries.17 For τ > 0, a larger number of varieties in the foreign country makes R&D in

the home country more efficient, as the entrepreneurs can learn from the existing varieties. Finally,
N1−η
t−1

S1−η
t

captures that higher aggregate spending on new technologies relative to the stock of existing

technologies has decreasing returns to scale parametrized by η.

The production of new technologies is subject to a marginal efficiency shock with law of motion:

log(ζt) = (1− ρζ)ζ̄ + ρζlog(ζt−1) + σζε
ζ
t ,

where ρζ parametrizes the persistence and σζ the volatility of the disturbance. εζt is an i.i.d. normally

distributed shock with mean zero and variance one.

16We choose the size of the fixed cost, so that, in concert with all other calibration targets and parameter restrictions,
we arrive at a plausible profit share in GDP along the balanced growth path.

17This formulation follows, for example, Gavazzoni and Santacreu (2019).
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The aggregate law of motion of technologies is

Nt = (1− δn)Nt−1 + γt,

where, in a symmetric equilibrium Si,t = St.

γt := ζt
(
Nt−1 + τN∗t−1

)1−η
Sηt .

In the second step, entrepreneurs choose how much final goods at to invest in each unadopted

technology to turn them into the blueprint for a new intermediate good. Their problem at this stage

is

Jt = max
at

[−Ptat +EtΛt,t+1 (λt(at)Ht+1 + (1− λt(at)) (1− δn)Jt+1)] .

The cost of adopting an idea is Ptat. The probability of turning the unadopted idea into a new

variety next period is λt(at). λt is a concave, increasing function measuring the basic probability of

adoption. If adoption is not successful, the unadopted technology becomes obsolete with probability

δn, otherwise the entrepreneur can try again next period.18

The resulting aggregate law of motion of intermediate goods at the end of the period is then

At = (1− δa)At−1 + λt(at)(Nt−1 − At−1).

2.5 Government

We assume that the domestic government consumes a fraction Gt of the domestic product. This

fraction is stochastic and governed by the law of motion:

log(Gt) = Ḡ(1− ρG) + ρGlog(Gt−1) + εGt ,

where ρG parameterizes the persistence and σG the volatility of deviations from the mean of the

logged government to output ratio Ḡ. εGt is an i.i.d. normally distributed disturbance with mean

zero and variance one. Government spending is financed by lump sum taxes.

2.6 Equilibrium and Model Solution

The equations characterizing the dynamic equilibrium are collected in the Appendix. International

price movements together with exogenous spillovers ensure that, in the long run, the two economies

fluctuate around a common trend. We normalize the model equations by the common stochastic

trend and solve by log-linearization around the stochastic growth path.

18In some of our experiments, we assume that the shock to ζt also moves λt proportionally. In these cases λt is
replaced by λt ∗ ζtζ̄ .
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2.7 Exogenous Growth Benchmark

To better highlight the role of endogenous growth, we generate an alternative economy with exogenous

growth as a comparison point. To keep this alternative model as close as possible to the baseline

economy, we only introduce two modifications. First, we assume that the flow of new varieties is

constant at the balanced growth path rate targeted in the calibration. Second, we remove the costs

of R&D and adoption from the resource constraint and the definition of profits, and we increase

proportionally the fixed cost in order to keep the available resources for production at the same level

in the two models along the balanced growth path.

3 Calibration and Estimation

To understand the ability of endogenous productivity to generate low-frequency fluctuations of the

RER, we will compare two different versions of the baseline and exogenous growth economies. First,

we simplify the model along several dimensions to highlight the effect of endogenous productivity on

the RER. For this first experiment, we only estimate the parameters related to the shock processes

in each model for a subset of these shocks using some basic macroeconomic time series to discipline

these. The rest of the parameters are externally calibrated. The second version estimates the full

model. Besides all the shocks, we also estimate structural parameters that are important for the

model’s fit along key dimensions and for which previous work does not give tight priors. Therefore,

we can assign parameters to two groups.

The first group of parameters is calibrated to match moments along the balanced growth path or

assigned typical values from other studies. The second group is estimated across all experiments

using Bayesian methods and quarterly data from 1972 to 2016. The Bayesian estimation of the

parameters uses the methods discussed, for example, in An and Schorfheide (2007).19

3.1 Calibrated Parameters

We calibrate most parameters in the first group targeting moments of the United States over the

period from the first quarter of 1973 to the last quarter of 2016. Trade and exchange rate related

moments are with respect to the other G-7 countries (Canada, France, Germany, Italy, Japan,

U.K.) weighted by U.S trade weights.20 Besides the shock processes, every fundamental parameter

is symmetrical between the countries. Therefore, both countries share a common non-stochastic

balanced growth path.

19The estimation is performed using Dynare. For an introduction to Dynare, see Adjemian, Bastani, Juillard,
Mihoubi, Perendia, Ratto, and Villemot (2011). In each estimation, we first found the posterior mode and then
explored the posterior with the Metropolis Hasting algorithm. We drew multiple chains with 200,000 steps and kept
the last 50 percent of each.

20Our trade data starts only in 1985 given data restrictions. We treat the previous quarters as missing when
constructing our empirical targets.

15



Parameters: Household

As we abstract from other factors influencing risk preferences, we set the risk aversion σ to 5, often

argued to be a plausible upper bound on this parameter and commonly used in the international

macroeconomics literature studying exchange rates (see, for example, Chari, Kehoe, and McGrattan

(2002) and Steinsson (2008)). ψ̄1 is chosen to match a labor supply of 1
3

along the balanced growth

path given the other parameter choices. We set φ = 0.01 in line with Schmitt-Grohé and Uribe

(2003) and Rabanal and Rubio-Ramirez (2015). While this parameter being larger than zero is

needed to ensure the existence of a stationary equilibrium relative to trend, it also affects exchange

rate dynamics by driving a small wedge into the uncovered interest parity condition.21 For the

utilization rate, we use the functional form δk(·) = δ̄0 + δ̄1(·)1+δ̄2 . δ̄0 is set to generate a share

of investment in GDP of 19 percent along the balanced growth path. δ̄1 is calibrated to set the

utilization rate to 1 on the balanced growth path.

Parameters: Trade and Production, Technology Adoption

In the problem of the retailer, we set ρ = 1.5 and ι = 10, the latter to generate a smaller short-run

than long-run elasticity of trade. We follow the parametrization of Erceg, Guerrieri, and Gust (2006),

which are in line with recent empirical estimates by Boehm, Levchenko, and Pandalai-Nayar (2020)

and related work by Drozd, Kolbin, Nosal, et al. (2019) on trade dynamics.22 We set aD and aI to

match the average of the import-to-GDP ratio and export-to-GDP ratio of the U.S. with the other

G-7 countries, which is 5 percent, and aD +aI = 1.23 We calibrate αK , αL , andαM to 0.16, 0.34, and

0.5, respectively. The resulting share of labor in the value added production function is 68 percent

and the share of intermediate goods in total expenditures is 50 percent of gross production, both in

line with typical calibrations in the literature based on national accounts. Z̄ is normalized so that

the ratio of GDP to technology At−1 is set to 1. Φ is calibrated to match a profit share in GDP of 10

percent, roughly at the higher end of values based on national account data. µ is set to ensure the

exis10ce of a balanced growth path, resulting in µ = 1.52. We set δn = 0.025 and δa = 0.025, common

values in the literature (see, for example, Comin and Gertler (2006) and Anzoategui, Comin, Gertler,

and Martinez (2019)). As the functional form for the probability of adoption, we set λ(·) := λ̄(·)µλ .

We calibrate the average adoption rate to five years, pinning down λ̄ from the balanced growth path

(Comin and Gertler (2006)). ζ̄ is set to achieve a growth rate of 1.68 percent annualized, the average

growth rate between our two countries in the data. Finally, we calibrate ḡ, so that the government

21We have experimented with estimating φ1 or using a smaller value. The results are similar to the one presented
in the paper, with only mild changes to the estimated properties of the UIP shock.

22By setting a long run trade elasticity clearly above 1, our results are different from the channel proposed by
Corsetti, Dedola, and Leduc (2008), which relies on a low short and long run elasticity of substitution

23We use GDP, consumption, investment, and trade data to discipline our estimation. As such the government
expenditure shock will capture both movements in government expenditures and net-exports with other non-G-7
countries. In this sense, it should be more thought of as an ’autonomous expenditure shock’, an interpretation
effectively used in many closed economy DSGE models, see, for example, Smets and Wouters (2007).
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expenditure to GDP ratio is 19 percent along the balanced growth path, similar to the U.S. value

over this time period. Table 1 summarizes the calibrated parameters.

Table 1: Calibrated Parameters

Parameter Value Interpretation
σ 5 Risk Aversion
φ1 0.01 Bond Holding Cost
δ̄0 0.015 Capital Depreciation BGP
ρ 1.5 Elasticity Substitution Home and Foreign Good
ι 10 Trade Adjustment Cost
aD 0.9820 Scale Preference Home Good
aI 0.0898 Scale Preference Foreign Good
αK 0.32 Capital Share Production
αL 0.68 Labor Share Production
αM 0.5 Share Intermediate Goods Production
Z̄ 2.375 Scale Production
Φ 0.258 Fixed Cost Production
µ 1.52 Elasticity of Substitution Intermediate Goods
δn 0.025 Obsolescence of New Ideas
δa 0.025 Obsolescence of Adopted Products
ḡ 0.106 Government Expenditure Share of Production

Notes: This table lists the parameters that are calibrated to values shown here
in most of our exercises. See the text for the details on the calibration targets.
We omit scale parameters like ψ̄1 as they depend on estimated parameters and
are, therefore varying across different exercises.

Parameters: Calibrated for the simple model

The following parameters are estimated in our second exercise, but we calibrate them in the simple

model that we use for explaining the effects of endogenous growth on the RER dynamics. When

they are not estimated, we set them as follows. We choose a Frisch elasticity of 1
3

(ψ2 = 3), well

within values in the literature and not too far from our own estimates shown later. The wealth effect

of labor supply γ is set to 0.05, slightly higher than Jaimovich and Rebelo (2009), generating small

wealth effects in the labor supply. This value is close to our later estimates and close to the one

found in the estimation of the exogenous growth model. The same applies to our next choice. We

use the following functional form φi(·) = φ̄i((·) − 1)2 for the investment adjustment cost, setting

φ̄i = 0.5, within the wide variety of estimates found by the literature. Finally, we set φ2 = 0 and

remove utilization from the simple model.

For the endogenous growth parameters, we face parameter uncertainty as well and so we, again,

choose them based on our later estimation results. However, we should mention that the elasticity

parameters are towards the lower end typically found and that higher values would lead to even

stronger effects of endogenous growth on model dynamics and the RER. Having said this, we set
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τ = 0.1, η = 0.15, and µλ = 0.15. Table 2 summarizes the additional calibrated parameters for the

simple model.

Table 2: Additional calibrated Parameters for Simple Model

Parameter Value Interpretation
ψ2 3 Inverse Frisch Elasticity
γ 0.05 Wealth Effect on Labor Supply
φ̄ 0.5 Elasticity of Investment Adjustment Costs
φ2 0 Exogenous Persistence of Real Exchange Rate
τ 0.1 International innovation Spillover
η 0.15 Elasticity New Technologies to R&D Spending
µλ 0.15 Elasticity Adoption to Adoption Spending

Notes: This table lists the parameters that are calibrated to values shown here
in our simple model. They will be estimated in the full estimated exercise. See
the text for the details on the calibration targets.

3.2 Data and Estimation

We interpret the home country as the United States and the foreign country as the other G-7

countries. To estimate the remaining parameters of the model, we take quarterly data on GDP

growth, private consumption growth, investment growth, and total hours growth, all in per capita

terms and seasonally adjusted, from the database in Ohanian and Raffo (2012) running from the

second quarter of 1972 to the last quarter of 2016 for the G-7 countries. We aggregate the G-7

excluding the United States using relative trade weights constructed from import and export data

from the BEA. Using data on nominal exchange rates from the Federal Reserve Bank of St.Louis’s

Fred database with data on the CPI price level from the IFS data set of the IMF, we also construct

RER measures for the U.S. relative to the other G-7 countries. We aggregate them in the same fashion

as the other series. In addition, we take U.S. import and export data with the other G-7 countries to

construct import and export measures going back to 1985.24 Finally, we collect R&D spending data

for the U.S. from the Federal Reserve Bank of St. Louis’ Fred database and yearly R&D expenditures

for the other G-7 countries from the OECD. All series are adjusted for seasonality.25

Using the above data, we perform a set of Bayesian estimations, which we will detail in the result

section. We specify standard priors for all parameters, summarized in Table 3, which we hold constant

throughout the estimation exercises.26

24Our measures of trade in goods and services do not go back all the way to 1985, but they start in 1999. To fill in
the gap, we extend the series back using growth rates in exports and imports of goods, effectively assuming that the
growth rate was the same for both categories.

25As mentioned before, we weight data from the G-7 excluding the U.S. based on trade weights constructed from
U.S. exports and imports. To be more specific, we weight the observations of each country in each quarter by the
sum of exports and imports in that quarter of the country to and from the U.S. divided by the sum of exports and
imports of all six countries in that quarter to and from the United States. As our trade data starts only in 1985, we
use the trade weights for the first quarter of 1985 to weight observations before 1985. Our results are robust to using,
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Table 3: Prior Distributions

Parameter Type Mean Standard Deviation
σx, x ∈ {ψ1, q, g, ζ,Ω

g,Ωl} Inverse Gamma 0.02 0.02
σ∗x, x ∈ {ψ1, q, g, ζ} Inverse Gamma 0.02 0.02
σx, x ∈ {Z, β} Inverse Gamma 0.002 0.002
σ∗x, x ∈ {Z, β} Inverse Gamma 0.002 0.002
σU Uniform 0.005 0.003
ρx,∀x Beta 0.5 0.15
ρ∗x,∀x Beta 0.5 0.15
φ̄i Gamma 2 1
δ2 Gamma 1 0.25
ψ2 Gamma 2 1
γ Gamma 0.1 0.05
φ2 Beta 0.5 0.2
µλ (#) Beta 0.5 0.15
η (#) Beta 0.5 0.15
τ (#) Gamma 0.1 0.05

Notes: This table lists the priors used in the estimation. Parameters with a (#)
are absent in the comparison model without endogenous growth.

4 Results

In this section, we discuss the main results from the quantitative exercise. We first estimate a

streamlined version of the baseline model and compare it to its exogenous growth counterpart to

illustrate how endogenous growth generates more persistent exchange rate dynamics. As a second

step, we perform a full estimation of the baseline model and its exogenous growth counterpart. This

exercise targets the RER in the data, but we find that only the endogenous growth models produce

reasonable moments of the RER. The third part of this section explores the main determinants of the

model success. The interaction between trade and endogenous productivity is key for the empirical

success of the baseline model. For the endogenous growth model, including trade data and shocks in

the estimation helps to generating low-frequency fluctuations on the exchange rate.

4.1 Endogenous Productivity and the Exchange Rate

We begin with a simplified version of the baseline model. First, we abstract from capital utilization

and assume a fixed depreciation rate. Second, we set φ2 = 0, eliminating the bond adjustment

cost à la Adolfson, Laséen, Lindé, and Villani (2008). Third, we remove the trade shocks and the

trade adjustment costs from the model. Fourth, we abstract from R&D, preference, and UIP shocks,

for example, the average weight from 1985 to 1989 instead.
26We experimented with the shape and parameters of the priors. In all experiments we performed, as long as the

priors were sufficiently diffuse, the results of the paper remained close to the ones reported. For comparability and
brevity we do not report these robustness checks. We set the prior for the standard deviation of the UIP shock to a
uniform to avoid influencing the estimate as much as possible, but we show results for a prior with more curvature in
the robustness section.
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keeping only TFP shocks, government expenditure shocks, investment efficiency shocks, and the

labor supply shock. Fixing most parameters at the values discussed in the previous section, we only

estimate the shocks processes using consumption, GDP, hours, and investment growth rates. We use

the same loose priors summarized in the previous section when estimating the underlying shocks.

Table 10 in the Appendix shows the posterior estimation results. Both models imply similar

estimates for the shock processes. The exogenous growth model has more volatile and persistent

innovations for the investment efficiency shock as well as higher investment adjustment costs, pointing

to less internal amplification of investment fluctuations. Importantly, the log data density clearly

favors our endogenous productivity specification over the exogenous version. This finding is consistent

with recent studies showing that endogenous productivity models fit the data better (Comin and

Gertler (2006) and Guerron-Quintana and Jinnai (2019)).

To assess if the differences between the endogenous and exogenous growth model are due to differ-

ences in the estimated parameters of the shock processes, we also include a version of the exogenous

growth model, where the shock processes are parameterized to be the ones estimated for the endoge-

nous growth model.

Figure 4: Endogenous Growth and the Exchange Rate

Notes: The left panel shows the spectrum and the right one the autocorrelation generated by the simple
model based on the theoretical moments of the model. The blue line shows the results for the estimated
simple endogenous growth model. The red line (’No Endogenous 1’) shows the results for the estimated
simple exogenous growth model. The yellow line (’No Endogenous 2’) shows the results for the simple
exogenous growth model when we use the standard deviation and persistence parameters estimated for the
simple endogenous growth model to compute moments.

Figure 4 compares the spectra and autocorrelation functions for the exchange rate computed at

the posterior mode in the three models—here, ’no endogenous 1’ denotes the estimated exogenous

growth model, while, ’no endogenous 2’ denotes the model when we fix the parameters to the ones

we estimated from the endogenous growth model. The left panel shows that the endogenous growth

model produces significantly more lower-frequency variation as measured by the spectrum relative to
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the two exogenous growth models. The right panel shows that the endogenous growth model exhibits

more persistence at any lag. In fact, at the fifth lag, the endogenous growth model almost doubles

the autocorrelation of the other two. Thus, the endogenous growth model generates more volatile

and persistent exchange rate dynamics. As we can see from comparing the results from the two

parametrizations of the exogenous growth model, differences in the estimated stochastic processes do

not explain the difference between the endogenous and exogenous growth models with respect to the

exchange rate. If anything, switching to the stochastic process estimated endogenous growth model

worsens the ability of the exogenous growth model to generate low-frequency variations. Instead, the

internal propagation of the model is the key source of the amplification in exchange rate volatility

and autocorrelation.

This simple version of the model shows that endogenous growth has the potential to generate a

volatile and persistent RER in a standard international real business cycle model. As we will see

momentarily, disturbances in our benchmark model trigger persistent gaps in consumption, produc-

tion, and productivity, which results in the low-frequency movements in exchange rates. The main

difference between these models is the stochastic properties behind these series.27 In fact, facing the

same realization of shocks, agents in the endogenous growth model expect persistent differences in

productivity and output, while agents in the exogenous growth models see these differences as tran-

sitory. These differences in expectations when facing the same macroeconomic data are the source

of the relative volatility and persistence of the endogenous growth model.

A potential caveat with this first analysis is that the exogenous growth model is too simplistic to ex-

plain exchange rate dynamics. Hence, it is hardly surprising that the endogenous version outperforms

it. The next subsection estimates the full model, which allows for many features that international

macroeconomic models have used to rationalize exchange rate movements. Therefore, forcing our

mechanism to compete with other potential channels and show that the internal amplification of the

baseline model is indeed needed to capture the low-frequency movements of the exchange rate.

4.2 Full Estimation Results

Now, we proceed to the estimation of the full model. The estimation of the exogenous growth model

includes trade and exchange rate time series. The baseline endogenous growth model estimation also

includes R&D data for both countries to force the estimation to match the empirical properties of

innovation efforts.

We estimate two versions of the endogenous growth model that only differ on the treatment of the

R&D data. The first version counts development and adoption expenditures as the model counterpart

27Given that we use GDP, investment, and hours in the estimation, when constructing the capital stock using the
perpetual inventory method, as it is often done in the literature, the two models would imply the same in sample Solow
residual. We can also use the model capital stock directly to adjust for the effects of variations in depreciation and
the investment-specific shock. Using the fully fledged endogenous and exogenous growth model the between-model
correlations between filtered TFP growth rates is more than 0.92 for both countries and the volatility is less than ten
percent larger in the endogenous growth model. In the simple model discussed here the series are even more similar.
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of R&D and assumes that the R&D productivity shock boosts both margins, while the second version

only uses the expenditure on development of new technologies as the model counterpart. In this

subsection we limit most of our analysis to the first version, as, in general, results between the two

versions are rather similar, with the former providing a slightly better fit.28

Table 11 in the Appendix shows the estimation results for the shock processes in the model. The

baseline endogenous growth model requires a less volatile investment shock and less volatility on

the UIP shock, pointing to the internal amplification of the model on investment and exchange

rate dynamics. Table 4 in turn shows the posterior distributions of the eight parameters included

in the estimation. The model selects relatively low elasticities of endogenous growth to spending

(µλ and η). Interestingly, when the R&D expenditure model counterpart only includes the first

stage development cost, the estimation results in less curvature in both R&D stages and less between

country technology spillovers (τ). The endogenous growth model selects lower investment adjustment

costs (φi) given that it needs considerably less volatility on the exogenous investment shock. The

estimated depreciation elasticity to capital utilization (δ2) is larger in the endogenous growth model

while there is no difference on the estimated Frisch Elasticity ( 1
ψ2

). The endogenous growth model

has slightly larger wealth effects (γ), and it requires a lower exchange rate based bond adjustment

cost (φ2).

Table 4: Posterior Estimation - Main Specifications 2 - Other Parameters

Parameter Endogenous Endogenous Exogenous
Parameter Both Stages New Tech only
µλ 0.082

[0.029,0.132]
0.117

[0.044,0.192]

η 0.127
[0.061,0.193]

0.136
[0.066,0.229]

τ 0.097
[0.024,0.164]

0.081
[0.016,0.163]

φi 0.021
[0.008,0.033]

0.016
[0.005,0.026]

0.186
[0.097,0.273]

δ2 1.789
[1.285,2.314]

1.729
[1.250,2.517]

1.104
[0.705,1.478]

ψ2 4.739
[3.330,6.124]

5.742
[4.185,7.335]

4.475
[3.080,5.848]

γ 0.068
[0.032,0.103]

0.071
[0.033,0.107]

0.053
[0.019,0.084]

φ2 0.234
[0.161,0.303]

0.226
[0.156,0.297]

0.343
[0.266,0.420]

Log Data Density 7838.47 7834.41 6517.93

Notes: This table lists the posteriors for selected parameters resulting from the estimation. The remaining
results are in the appendix.

Table 5 shows selected business cycle moments (HP-filtered) for the baseline endogenous growth

with both R&D stages and the exogenous growth model. To simulate these moments, we create

10,000 simulations of length 179, the number of periods in our data set, from the model with the

estimated parameters set at their posterior mean. To determine the shock realizations, we begin

by filtering the historical data from 1972:Q2 to 2016:Q4, which gives us 179 period by period shock

28We explored both mappings between the data and the model, as it is not clear if adoption spending is fully
reflected in the R&D series. It turns out this distinction matters little for our main result.
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realizations.29 Then we draw with replacement from these realizations to simulate the model. Finally,

we filter the model series, compute the respective moment, and average across the 10,000 repetitions.

For exports and imports, we adjust the simulations to take into account that our data series for these

variables only start in 1985.

Broadly speaking, the performance of both models is similar and close to their empirical counter-

part. The high-frequency fluctuations of the RER–deviations from the HP-trend–are well matched

by both models as are many of the basic business cycle properties, although they are somewhat atten-

uated relative to the data. The correlation between relative consumption and the RER, is around 0.2

in our models, close to the value of 0.07 in our data. The estimated models are, therefore, consistent

with the Backus-Smith statistic. Importantly, the low-frequency success of the endogenous growth

model does not come at the cost of under-performing at higher frequencies. The column Cor∗ shows

the correlation between a domestic variable and its foreign counterpart.

Table 5: Business Cycle Moments

Data Endogenous Exogenous
Series Both Stages

Std CorY ACC Cor∗ Std CorY ACC Cor∗ Std CorY ACC Cor∗

GDP 1.48 1.00 0.88 0.76 1.06 1.00 0.72 0.35 1.03 1.00 0.75 0.45
GDP ∗ 1.11 1.00 0.88 0.76 0.80 1.00 0.73 0.35 0.79 1.00 0.76 0.45
C 1.22 0.87 0.89 0.56 0.80 0.59 0.69 0.44 0.80 0.65 0.68 0.40
C∗ 0.78 0.85 0.82 0.56 0.64 0.69 0.69 0.44 0.64 0.68 0.67 0.40
I 6.63 0.94 0.83 0.72 5.35 0.85 0.74 0.25 5.01 0.83 0.76 0.33
I∗ 3.79 0.92 0.86 0.72 2.80 0.77 0.73 0.25 2.90 0.74 0.79 0.33
H 1.53 0.86 0.92 0.78 0.96 0.66 0.69 0.46 0.91 0.62 0.71 0.47
H∗ 0.90 0.87 0.88 0.78 0.59 0.46 0.69 0.46 0.59 0.47 0.70 0.47
RER 4.28 -0.26 0.84 3.94 -0.20 0.80 4.03 -0.20 0.79
Export/GDP 0.19 0.59 0.83 0.21 -0.37 0.81 0.17 -0.22 0.77
Import/GDP 0.28 0.69 0.81 0.19 0.07 0.63 0.20 -0.03 0.64

Notes: This table lists selected moments. The data moments are generated by filtering the data from
1972:Q2 to 2016:Q4 using a HP-1600 filter. The model moments are generated by simulating the model
10000 times as described in the text and applying the same filter to the model series. We then compute
the moments and average across simulations. Variables with a star denote G6 variables, the one without
are U.S. variables. C stands for consumption, I for investment, H for total hours. GDP, C, I, H, and RER
are logged. Std is the standard deviation, CorY the correlation with the respective countries GDP, ACC
is the autocorrelation, and Cor∗ the cross-country correlation.

Because there are various shocks in the model, it is important to discuss the main drivers of the key

variables.30 When we consider domestic GDP, the main drivers of its volatility are the disutility shock,

ψ1,t, and the exogenous productivity shock, Zt, accounting for almost 80 percent of the variability of

GDP. The bulk of the fluctuations in domestic consumption is accounted for the discount shock, βt,

the disutility shock, the government spending shock, Gt, and the shock to the marginal efficiency of

producing new technologies, ζt.

The volatility of international variables comes from shocks that drive wedges in financial and trade

29We use 1972:Q2 as initial condition here and in the following simulation exercises if not noted otherwise. Results
were robust to simulating the model for a long time and only keeping the last 179 observations in each run.

30To save space and avoid boring the reader with a long discussion, we omit a complete analysis.
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markets, and the production of technology. For example, the UIP disturbance explains 60 percent of

the fluctuations in the domestic ratio of exports-to-GDP. Furthermore, the same shock accounts for

46 percent of the volatility of the RER. This finding provides empirical validation to the hypothesis

that financial shocks are crucial to exchange rates (Itskhoki and Mukhin, 2017). Yet there is more

to be said. In particular, exchange rates also fluctuate due to innovations in the productivity of

producing exports and in the marginal efficiency of producing new technologies. The importance of

a shock in the endogenous productivity block points once again to the relevance of the main channel

proposed in this paper.31

Without going into details, it is worth stressing that in the exogenous growth counterpart, the

discount factor and UIP shocks become more important. For instance, the first shock explains about

40 percent of the volatility of consumption (versus 26 percent in the endogenous counterpart) and 10

percent of that of the RER (versus 0 percent in the benchmark model). These findings suggest that,

in the absence of the endogenous mechanism in the production sector of the economy, the model

increases the role of the financial block (bluntly captured by the β and U shocks), which is consistent

with the theoretical results in Itskhoki and Mukhin (2017).

Although the simple model comparison showed the ability of endogenous growth to generate per-

sistent and volatile exchange rates, the experiment was silent about the likelihood of observing such

dynamics on a finite sample. Figure 5 compares the finite sample exchange rate spectra of the models

with their empirical counterpart. To construct this figure, we use the unfiltered 10,000 samples of

length 179 used to produce the moments in Table 5 and construct the median and the percentiles of

the spectrum. As seen in panel a, the median simulation of the baseline endogenous growth model

(dashed blue line) closely tracks the empirical spectrum (solid black line). In contrast, the empirical

spectrum lies outside the 90 percent bands of the spectrum from the exogenous growth model (dotted

blue line, panel b). In fact, the upper bound confidence interval is only 60 percent of its empirical

counterpart at frequencies longer than 20 quarters.

The spectrum combines information of the total unfiltered volatility and the autocorrelation func-

tion of the exchange rate. A potential concern is that the endogenous growth model under-performs

at one or both of those margins but still has a better net effect once we put the information together.

The standard deviation of the unfiltered RER in the data is 10.42. In the simulations used to con-

struct the spectrum, the exogenous growth model generates a standard deviation of 7.07. Meanwhile,

the endogenous growth model with a volatility of 9.85 is much closer to the data.32 Figure 6 shows

the autocorrelation functions for both models and compares it with their empirical counterpart.

31We have also estimated the model without UIP shock, adding iid measurement error to the measurement equation
for the RER. Here, we limited the measurement error to explain at most 5 percent of the variance of the exchange
rate. As can be seen in the appendix our main result is robust to this change. However, we prefer the version with
UIP shocks as there is strong evidence for deviations from UIP.

32Using iid normal shocks does not change the conclusion. Under this scenario, the volatility of the exchange rate
is 11.53 for the endogenous growth model and 8.34 for the exogenous growth model. The next subsection shows that,
under iid shocks, the baseline model also outperforms its exogenous growth counterpart in terms of matching the
empirical spectrum.
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(a) Endogeneous Growth (b) Exogeneous Growth

Figure 5: Exchange Rate spectrums

Notes: The thick, blue, broken line shows the median model spectrum simulated as described in the text,
the thinner lines the 90 percent confidence intervals. The black line is the data spectrum.

Consistent with the spectrum analysis, the endogenous growth model can rationalize the empirical

autocorrelation function of the exchange rate at every lag, while the credible set of the exogenous

growth autocorrelation function cannot capture the first seven autocorrelations. Therefore, the per-

sistent expected productivity differences triggered by endogenous growth dynamics can reconcile the

dynamic properties of the exchange rate without deviating from the international real business cycle

framework or assuming exogenous non-stationary fluctuations.33

Another way to visualize the endogenous channel at work is to study the impulse response function

(IRF) in the endogenous and exogenous growth models. Figures 7 to 9 show the IRFs for the R&D,

UIP, and the relative trade shocks, which are the main drivers of the volatility of the RER.34 The

impulse responses are plotted as percentage deviations from the pre-shock trend.

Figure 7 displays the economy’s response to a favorable R&D shock. This shock is only present in

the endogenous growth model, and we use it as a starting point to show how changes in innovation

effort can impact exchange rates, especially at medium and long horizons. R&D is more efficient

after the disturbance, and therefore both R&D stages attract more resources. The increase in R&D

opens a persistent productivity gap between the two countries. As the home economy expects to be

more productive in the future, consumption increases in anticipation of future wealth and hours have

a slight decrease on impact due to a moderate wealth effect.35 Hence, the home economy decreases

33While we assume stationary TFP shocks in the exogenous growth model, we have repeated the analysis in the
same model, but instead using shocks to the growth rate of TFP and assuming co-integration between TFP growth in
the two countries as in Rabanal and Rubio-Ramirez (2015). The fit to the data was slightly worse and the ability to
match the autocorrelation or spectrum of the real exchange rate did not improve. Detailed results are available upon
request.

34See Tables 12 and 13 in Appendix for a comprehensive variance decomposition of both models.
35Home bias tilts the increase in domestic consumption towards domestic goods.
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(a) Endogeneous Growth (b) Exogeneous Growth

Figure 6: Exchange Rate Auto-correlation Function

Notes: The thick, blue, broken line shows the median model autocorrelation simulated as described in the
text, the thinner lines the 90 percent confidence intervals. The black line is the data autocorrelation.

investment and increases borrowing to allocate more resources to R&D. The decrease in the price

of capital triggers an increase in capital utilization. In net, capital input increases, encompassing

an increase in labor supply due to factor complementarity and higher productivity. As R&D will

trigger increases in supply only in the medium-run, in the short run the wealth-driven increase in

demand outpaces the slow increase in supply and the exchange rate appreciates.36 In contrast to

the previous literature, this effect slowly reverses as the home economy accumulates a persistent

technology advantage that increases investment, hours, and production in the medium- and long-

run. This relative abundance of home goods transforms the initial appreciation into a protracted

depreciation.

Figure 8 compares the response of the home country–under endogenous and exogenous growth–to

a favorable UIP shock. We start by analyzing the response under exogenous growth. The favorable

UIP shock decreases the cost of borrowing for the domestic economy, appreciating the exchange rate.

From a financial perspective, the bond market has to clear and, therefore, the domestic price increases

to boost the return of domestic bonds. As a result of a lower cost of borrowing from abroad, the local

interest rate falls, impacting R&D and investment. First, R&D expenditures increase due to higher

demand and therefore higher profits associated to domestic production. The lingering expansion

helps the domestic country repay the borrowed funds without reducing consumption or investment.

Second, the lower domestic interest rate increases the present value of future profits, providing

further incentive to R&D investment. The expansion of R&D triggers the short- and medium-run

mechanisms described in Figure 7. Not surprisingly, the responses of every real variable are amplified

on impact and more persistent in the endogenous growth economy. Relative to the exogenous growth

36The underlying economic mechanism governing the short-run exchange rate dynamics is consistent with the
analysis of Raffo (2010) and Karabarbounis (2014).
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Figure 7: Impulse Response Function to R&D shock

Notes: The figure shows the IRFs from the endogenous growth model in blue solid lines relative to the
model path before the shock. In the upper-left quadrant the dynamics of basic research and development
and adoption are shown as black and magenta broken lines.

model (dotted red lines), the endogenous version delivers far more persistent changes in economic

activity, resulting in the lower-frequency movements in the RER. Two features of the UIP shock worth

stressing are (1) it generates effortlessly co-movement in the domestic economy and (2) it induces a

hump-shaped response of the RER. The second feature is crucial to induce realistic half-lives.

Finally, Figure 9 shows the IRFs to a relative trade shock (Ωl
t). In the exogenous growth model,

this shock decreases the cost of exporting from the home economy, making home goods cheaper in
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Figure 8: Impulse Response Functions to UIP Shock

Notes: The figure shows the IRFs from the endogenous growth model in blue solid lines relative to the
model path before the shock. The red, dotted lines show the same for the exogenous growth model. In the
upper-left quadrant the dynamics of basic research and development and adoption are shown as black and
magenta broken lines.

the foreign country and therefore triggering a depreciation of the exchange rate. The simultaneous

increase in the cost of selling the foreign good to the home economy boosts this effect. Under

endogenous growth, the favorable trade shock increases the demand for exports, triggering an increase

in the demand for home intermediate goods. This increase in demand translates into higher profits

that provide incentives for R&D investment. Once again, triggering the short-run wealth effects and
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medium-run productivity dynamics described in Figure 7. Therefore, the endogenous growth model

amplifies the short-run responses and trigger rich and persistent dynamics to the main shocks that

drive the exchange rate.

Figure 9: Impulse Response Functions to Trade Cost shock - relative

Notes: The figure shows the IRFs from the endogenous growth model in blue solid lines relative to the
model path before the shock. The red, dotted lines show the same for the exogenous growth model. In the
upper-left quadrant the dynamics of basic research and development and adoption are shown as black and
magenta broken lines.

Before concluding this section, we want to highlight that our model can account for another reg-

ularity of RERs: its half-life. Using our data on exchange rates, we repeat the empirical exercise
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in Steinsson (2008) and find that the half-life of the RER is about 4.5 percent years, which coin-

cides with the value reported in his paper. As before, we proceed to generate a 10,000 synthetic

dataset, each of length 179, using our model as the data generating process. We then applied to

the synthetic RER the same approach used to compute the empirical half-life. The mean half-life

in our generated samples is 4.2 (1.8) for the endogenous growth model (standard deviation across

simulations in parenthesis). In contrast, the average half-life from the exogenous growth model is

2.0 (0.6). These results are not surprising given that our baseline model can generate volatile and

persistent fluctuations in exchange rates, which are required to deliver large half-lives. In fact, the

hump-shaped responses of the RER to the UIP and trade shocks foretell large half-lives. Finally, the

failure of the exogenous growth model is expected in light of the results in Steinsson (2008).

4.3 Robustness Analysis

Having documented the ability of the endogenous growth model to the empirical properties of the

exchange rate, we perform several robustness tests and unveil the central role of trade flow data. The

robustness analysis focuses only on the exchange rate spectrum, but our conclusions are also valid

for the unfiltered exchange rate volatility and the autocorrelation function.

4.3.1 Robustness: R&D

Endogenous growth allows for persistent expected productivity differences at the core of low-frequency

exchange rate dynamics. Figure 10 explores if modeling and estimation choices around the R&D fea-

tures determine the success of the endogenous growth model. The first panel shows that the success

of the endogenous growth model is robust to using the estimation from the second column in Tables

11 and 4 where R&D data is mapped only to first stage innovation expenditure. The second panel

estimates an alternative one-stage endogenous growth model, abstracting from the adoption stage

altogether; that is, Nt = At and no expenditures on adoption. This alternative model also generates

persistent expected productivity differences populating the low-frequency domain of the exchange

rate spectrum. The third panel shows that re-estimating the model without R&D shocks and not

using R&D data in the estimation only triggers minor deviations on the model spectrum. Therefore,

the particular details of the endogenous growth modeling do not affect the big picture of the results.

4.3.2 Robustness: Alternative Parameters

The first panel in Figure 11 fixes the structural parameters from the third column in Table 4 and

re-estimates the baseline endogenous growth model to show that the differences in the spectrums

are not due to differences in fundamental non-growth related parameters. The second panel uses an

alternative prior for the UIP shock volatility, replacing the flat distribution with an Inverse Gamma

distribution consistent with the priors used for the other volatility parameters. The performance

of the endogenous growth model is independent of the UIP prior. Risk aversion is typically an
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(a) Alternative R&D Definition (b) No Adoption (c) No R&D Data

Figure 10: Spectrum under different R&D assumptions.

Notes: The thick, blue, broken line shows the median model spectrum simulated as described in the text,
the thinner lines the 90 percent confidence intervals. The black line is the data spectrum.

important parameter for exchange rate dynamics. The third panel shows that estimating the risk

aversion with other model parameters does not change our main result.37 The fourth panel shows

that the endogenous growth model does not need the Adolfson, Laséen, Lindé, and Villani (2008)

risk premium to generate persistent and volatile exchange rates, but it improves the quantitative fit,

consistent with the literature.

4.3.3 Robustness: Nominal Exchange Rate

To round up our discussion, we now briefly turn to an important extension of our model that

allows us to talk about the nominal exchange rate. There is a well-established strong connection

between adjustments of the real and nominal exchange rate (for a recent discussion, see Eichenbaum,

Johannsen, and Rebelo (forthcoming)). Therefore, one concern about our model could be related to

the question if our mechanism is compatible with these facts, especially as we abstract from nominal

elements all together. However, borrowing from Eichenbaum, Johannsen, and Rebelo (forthcoming),

we show that adding nominal inflation and a reasonably parameterized Taylor rule to the model,

we arrive at dynamics of the nominal exchange rate and nominal relative prices that are compatible

with the common wisdom even without having to add sticky prices and wages.38

This approach requires two new ingredients. We add a standard Taylor rule with fairly standard

parameters in each country:

RN,t

R̄N

=

(
RN,t−1

R̄N

)0.75 (πt
π̄

)1.5(1−0.75)

;
R∗N,t
R̄N

=

(
R∗N,t−1

R̄N

)0.75(
π∗t
π̄

)1.5(1−0.75)

,

37It also only barely improves the fit of the exogenous growth model. This suggests that the underlying problem
of the exogenous growth model to fit the spectrum is more related to the persistence and not the volatility of the real
exchange rate,

38Here, we also echo some of the discussion in Itskhoki and Mukhin (2017) and Itskhoki and Mukhin (2019).
In particular, they argue that nominal rigidities are not central in explaining the exchange rate disconnect nore in
accounting for the Mussa puzzle. Instead, they argue for a central role of financial shocks in the form of UIP deviations
for explaining these two empirical regularities.
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(a) Alternative Parameters (b) Alternative UIP Prior

(c) Estimate Risk Aversion (d) φ2 = 0

Figure 11: Robustness - Alternative Parameters

Notes: The thick, blue, broken line shows the median model spectrum simulated as described in the text,
the thinner lines the 90 percent confidence intervals. The black line is the data spectrum.

and a nominal bond in each country in zero net supply, which results in the following Euler equa-

tions:

νct = Et

(
νct+1

Rt

πt+1

)
; νc,∗t = Et

(
νc,∗t+1

R∗t
π∗t+1

)
.

Here, RN,t is the nominal exchange rate, πt is the nominal inflation rate, and νct is the marginal utility

of consumption (see the Appendix for its definition). Using these expressions, we get a determined

inflation rate, while we have no effect on real quantities or real relative prices from monetary policy.

We view this exercise as illustrative, while adding a full set New Keynesian elements could be fruitful

endeavor for future work.
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Using the inflation dynamics resulting from our additions, we can simulate relative nominal prices

and the nominal exchange rate from our baseline endogenous growth model in the same fashion we

used to generate series for the RER. We compare the data and model along the two components of

the RER. To construct prices, we use the CPI in each country. As the involved series are likely to

be non-stationary, we extract a linear trend from them before constructing the spectrum. Figure 12

shows the results.

(a) Nominal Exchange Rate (b) Relative Price

Figure 12: Nominal Exchange Rate and Relative Prices

Notes: The thick, blue, broken line shows the median model spectrum simulated as described in the text,
the thinner lines the 90 percent confidence intervals. The black line is the data spectrum.

Focusing first on the black line in both panels of Figure 12, the nominal exchange rate in the data

shows a lot more variability than relative prices even after de-trending, in line with common wisdom.

Next, turning to the model results, our model preserves this ordering and matches the empirical

dynamics reasonably well. The key for this is the relatively stable inflation rate resulting from our

simple Taylor Rule and the good fit of the RER in our model.

4.4 The Importance of Trade Data

Figure 13 displays the impact that frictions, data, and shocks in the trade sector have on the RER

spectrum. The first panel increases the short- and long-run trade elasticity and re-estimates the

stochastic forces of the model.39 As one can see, the qualitative success of the model is not affected

by this feature. The next two panels show that the low-frequency co-movement of trade and exchange

rates documented in Figure 1 is one key element to generating a good fit of the RER at low-frequency.

The second panel of Figure 13 shows the spectrum if we estimate the model without trade data. We

clearly see a deterioration of the fit. When we remove the trade shocks, the model spectrum moves

even further away from the empirical one. Why is this the case? In the estimation without trade

39The short-run elasticity increases from 1.5 to 2 and the long-run from 10 to 15.
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shocks and data, the UIP shock ends up mainly fitting short-term variations in the exchange rate and

filtered shocks show more autocorrelation. Adding the trade shocks without the trade data essentially

works like adding an additional transitory shock to the RER to the model.40 The UIP shock takes

partially the role of matching more persistent movements in the RER, but it still overrides the effects

of endogenous growth, as the trade shocks still only play a minor role and trade in the model is not

as volatile as in the data. Adding trade data changes the picture, as the model now needs to explain

the actual movements of quantities between countries. This increases the importance of trade shocks

for the low-frequency movements of the exchange rate and leads the estimation to downplay the

volatile UIP shock, focusing it back to shorter-term movements of larger amplitude. In this sense it

is key to control for the low-frequency interaction between trade and the RER.

(a) Higher Trade Elasticity (b) No Trade Data (c) No Trade Data & no Shocks

Figure 13: The Role of Trade

Notes: The thick, blue, broken line shows the median model spectrum simulated as described in the text,
the thinner lines the 90 percent confidence intervals. The black line is the data spectrum.

To further illustrate the central role of trade data, we perform one last experiment. We estimate

three additional versions of the baseline endogenous growth model, none of which uses exchange rate

data for the estimation, and compare the model-based exchange rate with their empirical counterpart.

The first model only removes the RER data from the estimation process, the second version also

abstracts from UIP shocks, while the last version removes the trade data as well. Figure 14 compares

the empirical exchange rate with the series generated by each of the three models. Because the

exchange rate is not used in the estimation, nothing forces the model to perform on this dimension.

As our export and import data starts in 1985, we focus on the match of the models after that date.

Figure 14 shows that the two estimations that include trade flow data closely track the exchange

rate time series. In fact, the correlation of the implied exchange rates with its empirical counterpart

after 1985 is 0.57 on the full model estimated without RER data and 0.66 for the model without

UIP shocks. In contrast, the model that does not include trade data fails to track its empirical

counterpart, resulting in a negative correlation of -0.29. Simulating data from the models, one can

see that abstracting from trade data does not change the ability of the model to generate low-

frequency fluctuations of the RER. However, the trade data pushes the shocks filtered from the

40A transitory shock to relative trade costs has small effects on quantities and large effects on prices, thanks to the
trade adjustment costs.
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Figure 14: Model Implied Exchange Rate Dynamics

Notes: The black line shows the real exchange rate in the data. The magenta, broken line shows the filtered
real exchange rate from the endogenous growth model estimated without exchange rate data. The blue,
broken line shows the filtered series from the same model estimated without a UIP shock. The red, dotted
line is the filtered real exchange rate data from the model estimated without real exchange rate and trade
data, and without UIP shock.

model and the parameter estimates toward explaining the persistent movements in quantities and,

thereby, towards loading more on the endogenous growth mechanism.

In sum, the key to the empirical success of the baseline model relies on the joint dynamics of

trade, productivity, and the exchange rate. Because the connection between relative productivity

and relative prices is central for the endogenous growth model, the next section uses sector-level data

to validate this important co-movement.

5 Evidence from Sector-Level Data

The estimated model suggests that when the home country increases its technological leadership

with respect to the foreign country, the price of foreign goods increases relative to home goods. This

section tests this prediction with cross country-industry variation using yearly data for 1970− 2009

for 15 industries in 23 countries. In particular, we show that industries that increase their share

of patents registered in the United States patent office (USPTO) relative to the US experience a

decrease in their industry level prices relative to the US.
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5.1 Data Construction

To understand the construction of our relative price and technological distance measures, it is useful

to define the following indexes: i to denote an industry, c to denote a country, and t to denote a year.

Our construction of relative prices follows Lewis, Monarch, Sposi, and Zhang (2018). We use gross

output prices series for each sector from KLEMS to construct price indices for each year, country, and

sector relative to the US. To normalize the series, we use information from the GGDC Productivity

Level Database, as described in Inklaar and Timmer (2014). An increase in FXi,c,t implies that

the price of industry i in country c is increasing relatively to the US. Note that this measure is

directly related to technological progress and less likely to be contaminated by demand factors. In

fact, patent-based measures have been widely used as technology proxies in the endogenous technical

change literature as they closely relate to the spirit of these models.41

The industry-level measure of technological distance for each industry is similar to the one used

by Akcigit, Ates, and Impullitti (2018). First, we use the concordance of Goldschlag, Lybbert, and

Zolas (2018) to match patent classes in USPTO to industries in KLEMS. Second, for every year and

industry, we assign newly granted patents to each country based on the location of the principal

inventor in the application, and denote the number of new patents of country c in industry i by ni,c,t.

Third, we calculate the technological distance of country c in industry i as the log difference of ni,c,t

with respect to the same industry in the US, ni,usa,t.

TDi,c,t = ln

(
ni,c,t
ni,usa,t

)
The resulting sample is an unbalanced panel covering 15 industries for 23 countries between 1970

and 2009. Appendix A describes the data sources and presents general statistics for the sample. An

increase in TDi,c,t implies that country c is reducing its technology gap in industry i with respect to

the US.

5.2 Empirical Results

The use of panel data allows us to explore within industry-country variation to study the rela-

tionship between relative prices and technological distance, therefore abstracting from cross-country

differences in exchange rate regimes or development and cross industry differences in technological

dynamics. Moreover, we include time fixed effects to control for common global cycle components

like changes in US monetary policy. We start by studying the dynamic relationship between tech-

nological distance and exchange rates by conducting a lead lag analysis between the variables. In

41Appendix A shows that our results are not driven by traditional Solow residual or productivity measures.
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particular, we estimate the following set of regressions for s = 0, 1, ...5:

lnFXi,c,t = α +
0∑

j=−s

βs,jTDi,c,t+j + δt + µi,c + υi,c,t,

lnFXi,c,t = α +

j=s∑
0

βs,jTDi,c,t+j + δt + µi,c + υi,c,t,

where δt is a year dummy and µi,c is a country-industry fixed effect. Figure 15 plots the estimates for

βs,j=s for the 11 regressions along with the corresponding 90% confidence interval of the coefficient.

As an example, β−2,j=−2 captures the effect of technology at t ≤ T − 2 on exchange rate at time T .

Figure 15: Lead-lag Analysis
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In line with our model, Figure 15 shows that technology gap leads changes in relative prices. More-

over, closing the technological gap decreases relative prices. Thus, the data supports the relationship

between technology and relative prices at the core of the model. Considering the dynamic relationship

in Figure 15, we specify the following panel regression:

lnFXi,c,t = α +
0∑

j=−4

βjTDi,c,t−j + γXc,t + δt + µi,c + υi,c,t,

where Xc,t represents other potential controls not absorbed by the fixed effects. Table 6 presents

the results for seven specifications.

The first three specifications are pooled OLS regressions that illustrate the source of the negative

correlation between prices and technology. The first specification only controls for time fixed ef-

fects, and only the contemporaneous effect is significant and positive. By including country fixed
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Table 6: Effect of Patent Technology Gaps on Real Exchange Rates

lnFXi,c,t lnFXi,c,t lnFXi,c,t lnFXi,c,t lnFXi,c,t lnFXi,c,t lnFXi,c,t

TDi,c,t 0.343∗∗∗ 0.110 0.0699 -0.0187 -0.0780 -0.107∗ 0.00205
(0.0991) (0.0691) (0.0664) (0.0702) (0.0917) (0.0632) (0.0195)

TDi,c,t−1 0.0603 -0.0215 -0.0556 -0.0939∗∗ -0.183∗∗∗ -0.0961∗ -0.0173
(0.0460) (0.0344) (0.0346) (0.0397) (0.0586) (0.0531) (0.0143)

TDi,c,t−2 -0.0600 -0.0719∗∗ -0.0767∗∗ -0.0757∗∗ -0.190∗∗∗ -0.0155 -0.0146
(0.0424) (0.0330) (0.0315) (0.0359) (0.0646) (0.0535) (0.0130)

TDi,c,t−3 -0.0264 -0.0439 -0.0798∗∗ -0.102∗∗ -0.238∗∗∗ -0.0497 -0.0388∗∗

(0.0538) (0.0417) (0.0402) (0.0424) (0.0685) (0.0433) (0.0169)

TDi,c,t−4 0.0184 -0.00104 -0.0610 -0.0928 -0.147 -0.0944∗ -0.0167
(0.0901) (0.0671) (0.0631) (0.0641) (0.109) (0.0554) (0.0235)

rulci,c,t 2.844∗∗∗ 0.671∗∗∗

(0.592) (0.132)

Constant Yes Yes Yes Yes Yes Yes Yes
Observations 5509 5509 5509 5509 3859 3646 5471
Cluster SE Yes Yes Yes Yes Yes No Yes
Country-Industry FE No No No Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes No Yes
Country FE No Yes Yes - - - -
Industry FE No No Yes - - - -
Country-Year Interaction No No No No No No Yes

Note: Column 6 fits an Arellano-Bond model with 3 lags on the dependent variable

Robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

effects, the second specification controls for systematic differences on the relative prices of different

countries that could be driven by different exchange rate or monetary regimes. In this case, the

contemporaneous effect is no longer significant and the second lag of the technological distance mea-

sure significantly reduces relative prices. The third specifications also include industry fixed effects,

allowing for systematic differences of prices across industries, rendering the second and third lag co-

efficients significant. The last four regressions are panel fixed effects specifications that exploit within

industry-country variation. Consistent with the delay documented by the literature on technology

diffusion, regression four shows that the first three lags are significant, with the largest marginal im-

pact hitting with a three-year delay. To understand the economic magnitude of this effect, consider

that the standard deviation of TD after removing fixed effects and the common annual effects is

0.36. Therefore, a one standard deviation technological catch-up in t− 3 decreases relative prices in

t by 3.7%, with effects that persist for at least two more years. Berka, Devereux, and Engel (2018)
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show that accounting for labor cost dynamic is crucial when understanding exchange rate dynamics.

The fifth specification includes employee-based labor cost measures from the OECD, always relative

to the US.42 Interestingly, the results are even stronger under this specification, and the sign of the

labor cost variable is consistent with the literature as countries where labor costs are higher than the

US have higher relative prices. The sixth specification represents an Arellano-Bond estimator that

controls for spurious dynamics of the relative prices.43 Although the magnitude and significance of

the results are reduced, the message is unchanged. The last specification includes country-specific

trends that eliminate not only the dynamics of labor costs, but also any monetary or fiscal pol-

icy dynamic. Even under this extremely restricted specification, the main correlation of the model

remains.

Finally, to better estimate the dynamic effect of technology on prices, we estimate the following set

of local projection regressions for s = 0, 1, ..., 19, 20:

ln

(
FXi,c,t+s

FXi,c,t−1

)
= βs TDi,c,t−1 + γsrulcc,t−1 + δt + µi,c + ui,c,t,

where δt and µi,c are defined as above, and ui,c,t is an error term. As explained by Jordà (2005), we

see this set of regressions as a forecast tool to document how changes in technology are associated

with persistent dynamic in prices. The parameter βs shows the effect of technology catch up at year

t− 1 on the relative prices in period t+ s. Reported in Figure 16 are estimates of βs, with values of

s on the horizontal axis.

Figure 16: Prediction Regressions
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The results are consistent with Table 6: technological improvements predict lower industry prices.

42We have to drop India and Russia in this case.
43Three lags of lnFXi,c are enough to eliminate the auto-correlation of the residual.
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The effect of technology becomes significant at year 3, increases steadily until year 8, and vanishes

slowly after 13 years. Therefore, technological progress triggers low-frequency price dynamics that

decrease prices well beyond a decade.

6 Conclusion

The volatility and persistence of the exchange rate has challenged quantitative models in international

finance for decades. The challenge is even greater at low frequencies, as most of the volatility of the

RER is manifested in cycles that last decades. In this paper we show that a two-country real business

cycle model with endogenous technology growth and spillovers can help rationalize the volatility and

persistence of the RER, while being consistent with standard macro-economic dynamics at business

cycle frequencies. Two elements are key for the quantitative success of our framework.

First, endogenous growth provides internal propagation for every shock in the system. In particular,

any stationary fluctuation can potentially affect the incentives to perform R&D, thus changing the

future path of aggregate productivity. In particular, when a shock increases R&D investment, agents

expect persistent productivity differences across countries and therefore, the exchange rate exhibits

persistent low-frequency fluctuations. In addition, variations in adoption cause resource flows between

countries, generating additional movements in the RER.

Second, although endogenous growth has the potential to generate long exchange rate cycles, the

timing of these cycles can be potentially disconnected from the empirical exchange rate dynamics.

The robust low-frequency correlation between trade flows and exchange rates informs the estimation

of the model, allowing for a precise timing for the low-frequency cycles. In a nutshell, endogenous

growth opens the possibility of low-frequency fluctuations, but the trade data is key for the estimation

to take advantage of the internal propagation of the mechanism and separate movements in the RER

that are driven by financial effects captured by the UIP shock from other movements at lower

frequencies.

We use a simple nominal version of the model to show that our mechanism can jointly explain

nominal exchange rate and relative price dynamics. An interesting future avenue for research would

be to use a medium scale New Keynesian model to study the interaction of endogenous growth, trade,

and inflation on the full frequency domain. In particular, endogenous growth has the potential to

affect the degree of price stickiness needed to rationalize short-run exchange rate movements. From

an empirical perspective, our industry-level regressions shed light on the connection between relative

productivity and prices at the core of our model. Future research could link firm-level prices to

patent development to provide further evidence of this important co-movement.
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A Appendix: Data

A.1 Industry-level Exchange Rates

To calculate industry-level exchange rates, we use the productivity database from KLEMS44 and

Groningen Growth and Development Centre (GGDC) and nominal exchange rate data from FRED

and World Bank World Development Indicators. To illustrate the methodology, let’s first define

some notation. Let FXi,c,t be the industry i exchange rate of country c (with the United States)

in year t. GO P j
i,c,t represents the industry i gross output price in country c and year t (with

t = base representing the value for some base year) in terms of country j’s currency (with j = index

representing the corresponding price index rather than level). For example, GO PUS
i,c,base represents the

industry i gross output price in country c for some base year in terms of dollars. Lastly, exch.ratec,t

represents the nominal exchange rate of country c’s currency in terms of dollars. Let’s then define

the industry-level exchange rate as follows:

FXi,c,t ≡
GO PUS

i,c,t

GO PUS
i,US,t

=
GO P c

i,c,t

GO PUS
i,US,t

× 1

exch.ratec,t

=
GO P c

i,c,t/GO P c
i,c,base

GO PUS
i,US,t/GO PUS

i,US,base

× Ai,c
exch.ratec,t

=
GO P index

i,c,t

GO P index
i,US,t

× Ai,c
exch.ratec,t

where the constant Ai,c = GO P c
i,c,base/GO PUS

i,US,base. Note that exch.ratec,t comes directly from the

nominal exchange rate data, and GO P index is available for all countries in the KLEMS data (the

gross output price index series is called GO P ). Thus, the only thing remaining to calculate FXi,c,t

is the time-constant Ai,c. GGDC gives gross output price estimates relative to US GDP for the

year 2005 (in US dollars): GO RPi,c,2005 ≡ GO PUS
i,c,2005/GDP

US
US,2005. I calculate Ai,c by taking the

following ratio:

GO RPi,c,2005

GO RPi,US,2005

=
GO PUS

i,c,2005/GDP
US
US,2005

GO PUS
i,US,2005/GDP

US
US,2005

=
GO PUS

i,c,2005

GO PUS
i,US,2005

=
GO P c

i,c,2005

GO PUS
i,US,2005

× 1

exch.ratec,2005

=
Ai,c

exch.ratec,2005

=⇒ Ai,c =
GO RPi,c,2005

GO RPi,US,2005

× exch.ratec,2005.

Thus, we calculate industry-level exchange rates using the formula

FXi,c,t =
GO P index

i,c,t

GO P index
i,US,t

× GO RPi,c,2005

GO RPi,US,2005

× exch.ratec,2005

exch.ratec,t
.

44KLEMS databases are from the EU, Canada, Japan, Russia, and India.
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Note that fixed effects regressions with lnFXi,c,t eliminate any effect from mismeasurement on Ai,c.

A.2 Technology Gaps using Patents

To calculate technology gaps between sample countries and the United States, we use patent data

from the United States Patent and Trademark Office (USPTO) PatentsView website.45 From these

files, we have a data set with information on type (measured by CPC classification), year (measured

by application year), and country (measured by country associated with inventor) of every new

patent in the United States since 1970. We aggregate patents annually by country and by type at

the two-digit CPC level to achieve a panel with country-type as the panel variable and year as the

time variable. We then use a probability crosswalk from Goldschlag, Lybbert, and Zolas (2018) to

convert the CPC classifications into two-digit ISIC rev. 4 groups. With these classifications, I can

combine to achieve the industry groups as reported in KLEMS. For every observation (i.e., country-

industry in a year) I then calculate the technology gap between the given industry in that country

and the industry in the United States as follows:

TDi,c,t = ln

(
ni,c,t
ni,US,t

)
where ni,c,t is the number of new industry-i patents granted from country c in year t. This measure

is similar to the one used by Akcigit, Ates, and Impullitti (2018).

A.3 Measures of Productivity Differences

In addition to using patent data to estimate technology gaps, we also use for robustness purposes, two

alternative measures of TFP. The first measure is taken from Huo, Levchenko, and Pandalai-Nayar

(2018). They estimate the log-change in TFP, d lnZi,c,t
46. Because the patent measure captures

differences in growth, we define:

TDHLP
i,c,t = d lnZi,c,t − d lnZi,US,t

A second measure uses KLEMS data to estimate Solow residuals as a proxy for TFP. Huo,

Levchenko, and Pandalai-Nayar (2018) characterize a log-change in Solow residual as

d lnSi,c,t = d lnYi,c,t − αiηid lnmi,c,t − (1− αi)ηid lnhi,c,t − (1− αi)ηid lnNi,c,t − (1− ηi)d lnXi,c,t

where Yi,c,t = Zi,c,t
[(
Kαi
i,c,tL

1−αi
i,c,t

)ηi
X1−ηi
i,c,t

]γ
is real gross output, mi,c,t is the quantity of capital inputs,

hi,c,t is the average hours worked, Ni,c,t is the number of workers, and Xi,c,t is the bundle of materials

45Specifically, we merge the patent, cpc current, application, patent inventor, location inventor, and location data
files.

46for any variable Bi,c,t, d lnBi,c,t ≡ ln
(

Bi,c,t

Bi,c,t−1

)
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inputs. Thus, the second measure is

TDsolow
i,c,t = d lnSi,c,t − d lnSi,US,t

A.4 Industry Groups in KLEMS Data

Different releases of KLEMS use different revisions of ISIC codes. Older releases of KLEMS use

ISIC rev. 3.1, while the most recent release of EUKLEMS uses ISIC rev. 4. This would not be an

issue if there were a one-to-one mapping between the two revisions’ industry groups; however, the

switch to revision 4 causes some problems. Certain sectors are expanded to allow for more specific

classification, and other sectors are combined so that one is unable to distinguish between them in the

data. This precludes correspondence between the two ISIC revisions for these sectors. Two options

exist for resolving this issue in this paper. The first option is to use only older versions of KLEMS

and exclude data since 2007. The second option is to use all years of data available in KLEMS but

exclude industry groups that don’t have a one-to-one matching between the two revisions of ISIC.

We have opted for the former option and include all industry groups at the cost of not having any

observations after 2009. Because of the fact that only certain industries show up in the USPTO

patent data, we are left with the industries shown in Table 7. All results are robust to focusing on

the common industries for the longer period.

Table 7: Industry Groups in Sample

Industry Description ISIC rev. 3.1 # of countries

Food, beverages and tobacco 15t16 17
Wood and products of wood and cork 20 1
Pulp, paper products, printing and publishing 21t22 14
Coke, refined petroleum and nuclear fuel 23 17
Chemicals and chemical products 24 23
Rubber and plastics 25 12
Other non-metallic mineral products 26 19
Basic metals and fabricated metals 27t28 19
Manufacture of machinery 29 19
Electrical and optical equipment 30t33 22
Transport equipment 34t35 15
Manufacturing of furniture; recycling 36t37 18
Mining and quarrying C 5
Electricity, gas and water supply E 18
Construction F 9

Table 8 present the sample of countries and summary statistics for each one. Our sample criterion

requires 15 consecutive years of data, and we only include industries with 5 or more patents every

year for each country.
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Table 8: Summary Statistics by Country

Country Start Year End Year # of industries Mean lnFX Mean TD

Australia 1971 2007 13 -0.10 -4.44
Austria 1972 2007 12 -1.93 -4.65
Belgium 1972 2007 11 -2.71 -4.56
Canada 1972 2008 14 -0.01 -3.24
Czech Republic 1995 2007 2 -0.53 -7.21
Denmark 1973 2007 10 0.02 -5.19
Finland 1974 2007 12 -1.14 -4.91
France 1970 2007 14 -1.18 -2.93
Germany 1970 2007 14 -0.37 -1.80
Greece 1992 2007 2 -2.59 -8.07
Hungary 1991 2007 3 -0.49 -6.16
India 1981 2009 9 -0.73 -5.24
Ireland 1980 2007 7 0.10 -6.41
Italy 1971 2007 12 -5.61 -3.81
Japan 1973 2009 15 0.30 -1.22
Luxembourg 1976 2007 3 -2.05 -6.31
Netherlands 1972 2007 13 -0.65 -4.09
Poland 1995 2006 2 -0.52 -7.49
Russian Federation 1996 2009 9 -0.63 -5.39
South Korea 1978 2007 13 -0.17 -4.10
Spain 1974 2007 11 -3.19 -5.54
Sweden 1972 2007 13 0.09 -4.01
United Kingdom 1971 2007 14 -0.01 -2.96
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A.5 Robustness

One potential concern is that our measure of technological distance captures other aspects of tech-

nology or demand usually present in aggregate productivity or Solow residual measures. To explore

this alternative, we estimate the following regression:

TDi,c,t = α + β1TD
solow
i,c,t + β2TD

HLP
i,c,t δt + µi,c + υi,c,t,

where we remove the co-movement between our patent-based measure and traditional measures of

productivity (Solow and Solow corrected by utilization). Table 9 replicates Table 6 using the esti-

mated residuals υ̂i,c,t instead of TDi,c,t. The main message of the empirical section is still unchanged.

Table 9: Regressing Real Exchange Rates on Residuals

lnFXi,c,t lnFXi,c,t lnFXi,c,t lnFXi,c,t lnFXi,c,t lnFXi,c,t lnFXi,c,t

υ̂i,c,t -0.0493 0.0573 0.0675 0.0833 0.0148 -0.134∗ 0.00392
(0.0999) (0.0975) (0.101) (0.0997) (0.104) (0.0723) (0.0200)

υ̂i,c,t−1 -0.00152 -0.0233 -0.0348 -0.0363 -0.162∗∗ -0.115∗∗ -0.0197
(0.0613) (0.0573) (0.0584) (0.0573) (0.0673) (0.0585) (0.0136)

υ̂i,c,t−2 -0.0190 -0.0788 -0.103∗∗ -0.0906∗ -0.233∗∗∗ -0.0649 -0.0114
(0.0685) (0.0497) (0.0491) (0.0516) (0.0805) (0.0668) (0.0130)

υ̂i,c,t−3 -0.0837 -0.0926 -0.116 -0.124∗ -0.263∗∗∗ -0.0253 -0.0368∗∗

(0.105) (0.0743) (0.0737) (0.0724) (0.0912) (0.0491) (0.0164)

υ̂i,c,t−4 -0.0434 -0.128 -0.134 -0.150 -0.255∗ -0.0921 -0.0389
(0.166) (0.113) (0.110) (0.111) (0.145) (0.0686) (0.0258)

rulci,c,t 4.506∗∗∗ 1.225∗∗∗

(0.760) (0.178)

Constant Yes Yes Yes Yes Yes Yes Yes
Observations 4148 4148 4148 4147 3321 3111 4141
Cluster SE Yes Yes Yes Yes Yes No Yes
Country-Industry FE No No No Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes No Yes
Country FE No Yes Yes - - - -
Industry FE No No Yes - - - -
Country-Year Interaction No No No No No No Yes

Note: Column 6 fits an Arellano-Bond model with 3 lags on the dependent variable

Robust standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B Appendix: Model Equations

B.1 Characterization

In this subsection, we collect the equations characterizing an equilibrium. To keep things a little

shorter we drop the equations for stochastic processes. In the following equations νxt with x a letter

are Lagrange multipliers.

t−1∏
s=0

βs

(
ct − ψ1,txtl

1+ψ2
t

)−σ
− νctPt = 0

−
t−1∏
s=0

βs

(
ct − ψ1,txtl

1+ψ2
t

)−σ
ψ1,t(1 + ψ2)xtl

ψ2
t + νctWtPt = 0

νctPtR
k
t kt−1 − νkt δ′k(ut)kt−1 = 0

−Ptνct + νkt qt

(
1− φi

(
it
it−1

)
− φ′i

(
it
it−1

)
it
it−1

)
+ qt+1ν

k
t+1φ

′
i

(
it+1

it

)
i2t+1

i2t
= 0

−νkt + νkt+1(1− δk(ut)) + νct+1Pt+1R
k
t+1ut+1 = 0

−νctP ∗t + νct+1R
∗
tP
∗
t+1exp

(
b̄t
At

)−φ
exp(Ut)exp

(
b̄t−1

At−1

)−φ1 (
EtRERt+1

RERt−1

)−φ2
= 0

kt = (1− δk(ut))kt−1 + qt

(
1− φi

(
it
it−1

))
it

xt = c̄γt x
1−γ
t−1

βtνct (PtY
1−ρ
t aDy

ρ−1
D,t − pD,t) + ψt

(
−ι

( yI,t
yD,t
yI,t−1

yD,t−1

− 1

) − yI,t
y2D,t

yI,t−1

yD,t−1

)
+ ψt+1

(
−ι

( yI,t+1

yD,t+1

yI,t
yD,t

− 1

) yI,t+1

yD,t+1

yI,t

)
= 0

βtνct (PtY
1−ρ
t aIφ

ρ
t y
ρ−1
I,t − pI,t) + ψt

(
−ι

( yI,t
yD,t
yI,t−1

yD,t−1

− 1

)
1

yD,t
yI,t−1

yD,t−1

)
+ ψt+1

(
−ι

( yI,t+1

yD,t+1

yI,t
yD,t

− 1

) yI,t+1

yD,t+1

− yI,t
y2D,t

)
= 0

βtνctPtY
1−ρ
t aIφ

ρ−1
t yρI,t − ψt = 0
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Yt =
(
aDy

ρ
D,t + aI(φtyI,t)

ρ
) 1
ρ

φt = 1− ι

2

( yI,t
yD,t
yI,t−1

yD,t−1

− 1

)2

yt = ZtK̄
αK
t LαLt MαM

t

Mt = A
1
µ

t−1mt

pD,tαL
yt
Lt

= PtWt

pD,tαK
yt
K̄t

= PtR
k
t

pD,tαM
yt
Mt

(At−1m
µ
t )

1
µ
−1mµ−1

t = pt

pD,tΩ
g
tΩ

l
t = p∗I,t

1

µ
Pt = pt

πt =

(
1

µ
− 1

)
Ptmt − Φ

Ht = πt + (1− δa)Λt,t+1Ht+1

Λt,t+1 =
νct+1

νct

Nt = (1− δn)Nt−1 + γt

γt = ζ

(
Nt−1 + τN∗t−1

)1−η

S1−η
t

St

ζ

(
Nt−1 + τN∗t−1

)1−η

S1−η
t

Λt,t+1Jt+1 = Pt
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At = (1− δa)At−1 + λt(at)(Nt−1 − At−1)

Jt = −Ptat + Λt,t+1 (λt(at)Ht+1 + (1− λt(at))(1− δn)Jt+1)

Pt = Λt,t+1 (λ′t(at)Ht+1 − λ′t(at)(1− δn)Jt+1)

λt(at) = κλ (at)
µλ

Yt = ct + it + St + (Nt−1 − At−1)at + At−1mt +GtYt + ΦAt−1

bt + b∗t = 0

P ∗t bt = p∗I,ty
∗
I,t − pI,tyI,t + P ∗t R

∗
t−1bt−1

yt = yD,t + y∗I,tθ
GθR

Lt = lt

K̄t = kt−1ut
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B.2 Market Clearing

In this section, we collect the market clearing conditions:

Yt = Ct + It + St + (Nt−1 − At−1)at + At−1mt +GtYt + ΦAt−1

Here Gt denotes a government spending shock following the law of motion:

log(Gt) = Ḡ(1− ρG) + ρGlog(Gt−1) + εGt .

where ρG parametrizes the persistence and σG the volatility of deviations from the mean of the

logged government to output ratio Ḡ. εGt is an i.i.d. normally distributed disturbance with mean

zero and variance one. Government spending is financed by lump sum taxes Tt = GtYt−1.

International bond demand and supply have to be in equilibrium:

bt + b∗t = 0.

In addition, international goods market clearing requires:

P ∗t bt = p∗I,ty
∗
I,t − pI,tyI,t + P ∗t R

∗
t−1bt−1.

Factor market clearing requires

K̄D,t + K̄I,t = kt−1ut

LD,t + LI,t = lt

mD,t +mI,t = mt.

Profits payed to the household equal the profits from the intermediate good producer net of adoption

and R&D expenditures:

Πt = At−1πt − St − (Nt−1 − At−1)at
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B.3 Re-arrange and Normalize

Using the equations from the previous subsection of the appendix, we normalize the model by its

stochastic trend to derive a stationary representation. We also simplify the model slightly.

• ν̃ct =
νct∏t−1

s=0 βsA
−σ
t−1

Pt

• c̃t = ct
At−1

• x̃t = xt
At−1

• Ãt = At
At−1

• W̃t = Wt

At−1

• ν̃kt =
νkt∏t−1

s=0 βstA
−σ
t−1

• RERt =
P ∗
t

Pt

• q̃t = qt
Pt

• p̃t = pt
Pt

• p̃∗t =
p∗t
P ∗
t

• k̃t−1 = kt−1

At−1

• ˜̄Kt =
˜̄Kt

At−1

• ĩt = it
At−1

• Ỹt = Yt
At−1

• ỹt = yt
At−1

• ãt = at
At−1

• π̃t = πtPt
At−1

• S̃t = St
At−1

• γ̃t = γt
At−1

• Ñt = Nt
At−1

• B̃t = Bt
At−1

• M̃t = Mt

A
1
µ
t−1
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• ỹD,t =
yD,t
At−1

• ỹI,t =
yI,t
A∗
t−1

• Γt−1 =
A∗
t−1

At−1

• H̃t = Ht
Pt

• J̃t = Jt
Pt

• b̃D,t =
bD,t
At−1

• b̃I,t =
bI,t
A∗
t−1

(
c̃t − ψ1,tx̃tL

1+ψ2
t

)−σ
− ν̃ct = 0

−
(
c̃t − ψ1,tx̃tl

1+ψ2
t

)−σ
ψ1,t(1 + ψ2)x̃tl

ψ2
t + ν̃ct W̃t = 0

ν̃ctR
k
t − δ′k(ut)ν̃kt = 0

−ν̃ct + ν̃kt qt

(
1− φi

(
Ãt−1ĩt

ĩt−1

)
− φ′i

(
Ãt−1ĩt

ĩt−1

)
Ãt−1ĩt

ĩt−1

)
+ βtÃ

−σ
t ν̃kt+1qt+1φ

′
i

(
Ãtĩt+1

ĩt

)(
Ãtĩt+1

ĩt

)2

= 0

−ν̃kt + Ã−σt βν̃kt+1(1− δk(ut)) + Ã−σt βtν̃
c
t+1R

k
t+1ut+1 = 0

−ν̃ctRERt + βtν̃
c
t+1R

∗
tRERt+1exp(Ut)exp

(
b̃t

)−φ1 (EtRERt+1

RERt−1

)−φ2
= 0

k̃tÃt = (1− δk(ut))k̃t−1 + qt

(
1− φi

(
ĩtÃt−1

ĩt−1

))
ĩt

x̃t =

(
c̃t

Ãt−1

)γ (
x̃t−1

At−1

)1−γ

Ỹ 1−ρ
t aDỹ

ρ−1
D,t + Ỹ 1−ρ

t aIφ
ρ−1
t ỹρI,tφ̂t

ỹI,t
ỹ2D,t
ỹI,t−1

ỹD,t−1

Γ1+ρ
t−1 Γ−1

t−2 − βÃ−σt
ν̃ct+1

ν̃ct
Ỹ 1−ρ
t+1 aIφ

ρ−1
t+1 ỹ

ρ
I,t+1φ̂t+1

ỹI,t+1

ỹD,t+1

ỹI,t
Γ−ρt Ã∗t = p̃D,t
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Ỹ 1−ρ
t aIφ

ρ
t (ỹI,tΓt−1)ρ−1 − Ỹ 1−ρ

t aIφ
ρ−1
t ỹρI,tφ̂t

1
ỹD,t
ỹI,t−1

ỹD,t−1

Γρ−1
t−1

Ã∗t−1

Ãt−1

+βÃ−σt
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Ỹ 1−ρ
t+1 aIφ
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ρ
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ỹ2I,t
ỹD,t

Γρt Ã
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t

1

Γt−1

= p̃I,tRERt

Ỹt =
(
aDỹ

ρ
D,t + aI(φtỹI,tΓt−1)ρ

) 1
ρ

φt = 1− ι
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ỹD,t
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Ãt−1

− 1

)
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t

M̃t = mt
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ỹt
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= W̃t

p̃D,tαK
ỹt
˜̄Kt

= Rk
t

p̃D,tαM ỹtM̃
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t m̃µ−1

t = p̃t

p̃D,tθ
GθR = p̃∗I,t

1

µ
= p̃t

π̃t =

(
1

µ
− 1

)
mt − Φ
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t
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ÃtÑt = (1− δn)Ñt−1 + γ̃t

γ̃t = ζ

(
Ñt−1

Ãt−1

+ τ
Ñ∗t−1Γt−1

Ãt−1

)1−η

S̃ηt

ζ
(
Ñt−1

Ãt−1
+ τ

Ñ∗
t−1Γt−1

Ãt−1

)1−η

S̃1−η
t

Λ̃t,t+1J̃t+1 = 1

Ãt = (1− δa) + λt(
Ñt−1

Ãt−1

− 1)

J̃t = −at + Λ̃t,t+1

(
λt(at)H̃t+1 + (1− λt(at))(1− δn)J̃t+1

)

1 = Λ̃t,t+1

(
λ′t(at)H̃t+1 − λ′t(at)(1− δn)J̃t+1

)

λt(at) = κλ (at)
µλ

Ỹt = c̃t + ĩt + S̃t + (
Ñt−1

Ãt−1

− 1)at +mt +GtỸt + Φ

b̃t + b̃∗tΓt−1 = 0

RERtb̃t = p̃∗I,ty
∗
I,t − p̃I,tRERtΓt−1ỹI,t +RERtR

∗
t−1

b̃t−1

Ãt−1

ỹt = ỹD,t + ỹ∗I,tθ
GθR

˜̄Kt = k̃t−1ut

C Appendix: Additional Tables

Table 10 shows the parameter estimates in the simplified versions of the endogenous and exogenous

growth models.

In turn, Table 11 displays the estimated parameters from the full endogenous and exogenous growth

models.
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Table 10: Posterior Estimation - Minimal Data

Parameter Endogenous Exogenous
100 ∗ σψ1

2.54
[2.32,2.76]

2.53
[2.32,2.75]

100 ∗ σ∗ψ1
1.65

[1.50,1.80]
1.66

[1.51,1.80]

100 ∗ σZ 0.22
[0.20,0.25]

0.24
[0.22,0.27]

100 ∗ σ∗Z 0.22
[0.22,0.24]

0.23
[0.21,0.26]

100 ∗ σg 2.07
[1.86,2.28]

2.18
[1.99,2.38]

100 ∗ σ∗g 1.62
[1.45,1.78]

1.57
[1.43,1.71]

100 ∗ σq 5.93
[5.34,6.53]

6.36
[5.74,6.99]

100 ∗ σ∗q 3.30
[2.98,3.62]

3.74
[3.39,4.09]

ρψ1
0.968

[0.960,0.976]
0.973

[0.965,0.981]

ρ∗ψ1
0.916

[0.888,0.945]
0.915

[0.886,0.945]

ρZ 0.983
[0.977,0.989]

0.975
[0.965,0.985]

ρ∗Z 0.972
[0.966,0.978]

0.964
[0.953,0.976]

ρg 0.975
[0.968,0.981]

0.971
[0.965,0.978]

ρ∗g 0.978
[0.971,0.986]

0.962
[0.949,0.975]

ρq 0.510
[0.416,0.605]

0.600
[0.503,0.696]

ρ∗q 0.595
[0.497,0.692]

0.775
[0.697,0.861]

Log Data Density 4880.26 4847.50

Notes: This table lists the posteriors used in the estimation. Parameters with a
(#) are absent in the comparison model without endogenous growth.

C.1 Extra Figures

(a) Endogenous Growth (b) Exogenous Growth

Figure 17: Measurement Error

Notes: The thick, blue, broken line shows the median model spectrum simulated as described in the text,
and the thinner lines the 90 percent confidence intervals. The black line is the data spectrum.
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Table 11: Estimation Results - Main Specification 1 - Shock Processes

Parameter Endogenous Endogenous Exogenous
Both Stages New Tech only

100 ∗ σψ1
4.01

[2.91,5.13]
4.82

[3.57,6.07]
3.62

[2.57,4.66]

100 ∗ σ∗ψ1
2.44

[1.78,3.10]
2.92

[2.18,3.63]
2.32

[1.66,2.97]

100 ∗ σZ 0.20
[0.18,0.23]

0.21
[0.18,0.23]

0.23
[0.20,0.26]

100 ∗ σ∗Z 0.21
[0.19,0.23]

0.21
[0.19,0.23]

0.21
[0.19,0.23]

100 ∗ σβ 0.16
[0.07,0.24]

0.24
[0.08,0.42]

0.09
[0.07,0.10]

100 ∗ σ∗β 0.12
[0.07,0.17]

0.13
[0.08,0.18]

0.18
[0.11,0.25]

100 ∗ σg 2.17
[1.97,2.35]

2.20
[1.99,2.41]

2.20
[1.99,2.39]

100 ∗ σ∗g 1.50
[1.35,1.65]

1.51
[1.37,1.65]

1.55
[1.42,1.68]

100 ∗ σq 1.22
[0.90,1.53]

1.14
[0.81,1.46]

1.71
[1.03,2.35]

100 ∗ σ∗q 0.62
[0.48,0.76]

0.64
[0.46,0.78]

0.93
[0.60,1.26]

100 ∗ σΩg 3.44
[3.08,3.78]

3.45
[3.12,3.83]

3.45
[3.09,3.82]

100 ∗ σΩf 2.23
[1.99,2.48]

2.20
[1.96,2.43]

1.99
[1.78,2.20]

100 ∗ σζ 1.24
[0.97,1.49]

1.57
[1.17,1.99]

100 ∗ σ∗ζ 1.39
[1.04,1.74]

1.62
[1.21,20.7]

ρψ1
0.934

[0.922,0.947]
0.934

[0.922,0.945]
0.961

[0.950,0.973]

ρ∗ψ1
0.929

[0.904,0.954]
0.927

[0.901,0.949]
0.937

[0.911,0.964]

ρZ 0.926
[0.893,0.961]

0.940
[0.924,0.957]

0.902
[0.864,0.945]

ρ∗Z 0.968
[0.960,0.977]

0.968
[0.959,0.977]

0.966
[0.954,0.979]

ρβ 0.949
[0.904,0.985]

0.923
[0.857,0.984]

0.993
[0.990,0.996]

ρ∗β 0.947
[0.920,0.974]

0.944
[0.920,0.971]

0.939
[0.910,0.969]

ρg 0.979
[0.971,0.987]

0.978
[0.970,0.986]

0.971
[0.963,0.979]

ρ∗g 0.978
[0.969,0.986]

0.975
[0.965,0.986]

0.965
[0.952,0.978]

ρq 0.951
[0.927,0.975]

0.948
[0.922,0.973]

0.303
[0.129,0.470]

ρ∗q 0.628
[0.387,0.893]

0.690
[0.509,0.957]

0.320
[0.123,0.512]

ρΩg 0.961
[0.947,0.976]

0.963
[0.947,0.980]

0.984
[0.977,0.990]

ρΩf 0.982
[0.972,0.992]

0.981
[0.972,0.991]

0.961
[0.941,0.984]

ρζ 0.974
[0.962,0.991]

0.966
[0.952,0.979]

ρ∗ζ 0.902
[0.861,0.946]

0.896
[0.842,0.946]

ρU 0.983
[0.973,0.994]

0.984
[0.975,0.993]

0.897
[0.854,0.942]

100 ∗ σU 0.10
[0.08,0.13]

0.10
[0.08,0.12]

0.19
[0.11,0.27]

Notes: This table lists the posteriors used in the estimation. Parameters with a
(#) are absent in the comparison model without endogenous growth.
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Figure 18: Autocorrelation - No UIP Shock

Notes: The thick, blue, broken line shows the median model autocorrelation simulated as described in the
text, and the thinner lines the 90 percent confidence intervals. The black line is the autocorrelation in the
data.

Table 12: Variance Decomposition - Endogenous Growth

ψ ψ∗ g g∗ Z Z∗ q q∗ ζ ζ∗ Ωg Ωf β β∗ U
∆Y 44.41 0.01 0.11 0.01 35.14 0.02 8.33 0.22 0.63 0.01 6.96 0.28 0.07 0.01 3.79
∆Y ∗ 0.03 24.37 0.03 0.08 0.02 54.33 1.20 3.43 0.07 0.44 9.98 0.41 0.01 0.06 5.52
∆C 15.14 0.02 18.07 0.02 10.89 0.09 0.25 0.04 22.54 0.06 4.23 1.25 25.96 0.01 1.42
∆C∗ 0.10 8.32 0.07 13.18 0.07 35.33 0.14 1.07 0.36 6.26 6.55 1.94 0.03 24.39 2.20
∆I 31.40 0.03 6.47 0.00 26.15 0.10 16.12 0.22 8.17 0.02 3.36 0.57 4.60 0.00 2.78
∆I∗ 0.16 21.60 0.01 5.71 0.12 31.51 1.53 14.15 0.15 8.35 5.79 1.04 0.00 4.94 4.92
∆H 98.04 0.00 0.02 0.00 1.14 0.00 0.31 0.01 0.00 0.00 0.24 0.09 0.02 0.00 0.12
∆H∗ 0.00 95.37 0.00 0.02 0.00 3.05 0.06 0.28 0.00 0.02 0.61 0.23 0.00 0.03 0.31
U.S. Export/GDP 1.13 0.30 2.37 1.03 0.81 1.48 7.68 0.21 6.88 1.06 9.69 2.96 0.49 0.26 63.65
U.S. Import/GDP 1.52 0.22 0.92 0.34 1.00 1.62 4.60 1.00 14.13 2.09 37.93 12.69 0.32 0.11 21.50
RER 1.16 0.39 0.91 0.43 0.79 2.35 6.41 0.64 22.65 2.62 0.00 15.42 0.29 0.16 45.78
U.S. Solow Growth 1.07 0.00 0.26 0.01 62.91 0.02 9.05 0.01 26.03 0.04 0.23 0.12 0.08 0.00 0.16
G6 Solow Growth 0.01 0.48 0.02 0.15 0.01 81.03 0.04 3.34 0.38 13.85 0.28 0.15 0.00 0.06 0.19
Relative Solow 1.20 0.42 3.40 1.73 0.92 4.41 1.12 0.01 75.79 8.15 0.00 1.18 0.74 0.45 0.48
Relative TFP 1.30 0.42 3.68 1.71 0.98 4.48 1.20 0.01 74.39 8.87 0.00 1.22 0.80 0.44 0.49

Notes: This table lists the variance decomposition for selected variables from
the endogenous growth model with R&D measured as the sum of spending on
both stages using the long-run theoretical moments. ∆ indicates the growth rate
of a variable.
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Figure 19: Spectrum - No UIP Shock

Notes: The thick, blue, broken line shows the median model spectrum simulated as described in the text,
and the thinner lines the 90 percent confidence intervals. The black line is the data spectrum.

Table 13: Variance Decomposition - Exogenous Growth

ψ ψ∗ g g∗ Z Z∗ q q∗ Ωg Ωf β β∗ U
∆Y 36.31 0.04 1.25 0.05 36.38 0.06 11.67 0.21 7.56 0.45 2.23 0.06 3.73
∆Y ∗ 0.12 22.00 0.14 1.07 0.16 50.43 1.03 5.51 11.39 0.69 0.33 1.45 5.70
∆C 20.66 0.05 11.85 0.03 12.51 0.12 1.44 0.04 7.36 0.71 44.68 0.03 0.52
∆C∗ 0.20 9.83 0.09 7.96 0.17 33.12 0.21 0.70 11.69 1.12 0.41 33.68 0.81
∆I 21.35 0.01 6.35 0.03 28.63 0.01 25.90 0.20 2.69 0.26 10.36 0.04 4.17
∆I∗ 0.02 19.26 0.10 6.82 0.06 34.30 1.20 15.20 5.00 0.50 0.13 9.42 7.98
∆H 97.67 0.01 0.06 0.00 1.08 0.02 0.51 0.01 0.25 0.13 0.14 0.00 0.12
∆H∗ 0.04 95.72 0.01 0.08 0.06 2.32 0.09 0.37 0.58 0.31 0.02 0.13 0.28
U.S. Export/GDP 1.51 0.26 2.07 0.73 0.55 1.11 0.71 0.21 28.02 1.88 42.68 0.51 19.76
U.S. Import/GDP 2.41 0.47 0.43 0.21 1.23 1.24 2.55 0.74 70.33 7.91 3.77 0.24 8.48
RER 4.96 1.56 1.50 0.74 3.27 4.80 4.54 1.46 0.00 16.38 9.72 0.79 50.29
U.S. Solow Growth 1.26 0.01 1.31 0.00 78.63 0.03 15.89 0.01 0.21 0.35 2.13 0.00 0.17
G6 Solow Growth 0.04 0.75 0.00 0.95 0.04 89.64 0.02 6.29 0.27 0.46 0.02 1.31 0.21
Relative Solow (Level) 2.68 0.61 2.92 1.22 6.51 15.10 0.21 0.07 3.95 0.00 65.88 0.85 0.00
Relative TFP (Level) 0.00 0.00 0.00 0.00 30.25 69.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: This table lists the variance decomposition for selected variables from the
exogenous growth model using the long-run theoretical moments. ∆ indicates
the growth rate of a variable.
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